17.下面使用類比推理正確的是( 。
A.直線a,b,c,若a∥b,b∥c,則a∥c,類推出:向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,則$\overrightarrow a$∥$\overrightarrow c$
B.同一平面內(nèi),直線a,b,c,若a⊥c,b⊥c,則a∥b,類推出:空間中,直線a,b,c,若a⊥c,b⊥c,則a∥b
C.實(shí)數(shù)a,b,若方程x2+ax+b=0有實(shí)數(shù)根,則a2≥4b,類推出:復(fù)數(shù)a,b,若方程x2+ax+b=0有實(shí)數(shù)根,則a2≥4b
D.由向量加法的幾何意義,可以類比得到復(fù)數(shù)加法的幾何意義

分析 本題考查的知識(shí)點(diǎn)是類比推理,我們根據(jù)判斷命題真假的辦法,對(duì)四個(gè)答案中類比所得的結(jié)論逐一進(jìn)行判斷,即可得到答案.

解答 解:對(duì)于A,$\overrightarrow$=$\overrightarrow{0}$時(shí),不正確;
對(duì)于B,空間中,直線a,b,c,若a⊥c,b⊥c,則a∥b或a⊥b或相交,故不正確;
對(duì)于C,方程x02+ix0+(-1±i)=0有實(shí)根,但a2≥4b不成立,故C不正確;
對(duì)于D,由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義,正確.
故選:D.

點(diǎn)評(píng) 歸納推理與類比推理不一定正確,我們?cè)谶M(jìn)行類比推理時(shí),一定要注意對(duì)結(jié)論進(jìn)行進(jìn)一步的論證,如果要證明一個(gè)結(jié)論是正確的,要經(jīng)過嚴(yán)密的論證,但要證明一個(gè)結(jié)論是錯(cuò)誤的,只需要舉出一個(gè)反例.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在小正方形邊長(zhǎng)為1的網(wǎng)格中畫出了某多面體的三視圖,則該多面體的外接球表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在四面體ABCD中,AC=BD=3,AD=BC=3,AB=CD=4,則該四面體的外接球的表面積為17π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知定義在R上的函數(shù)f(x)=a-$\frac{1}{{{2^x}+1}}$是奇函數(shù),其中a為實(shí)數(shù).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的值域;
(Ⅲ)當(dāng)m+n≠0時(shí),比較$\frac{f(m)+f(n)}{{{m^3}+{n^3}}}$與f(0)的大小并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AD⊥CD,BC=2,AD=CD=1,M是PB的中點(diǎn).
(Ⅰ)求證:AM∥平面PCD;
(Ⅱ)求證:平面ACM⊥平面PAB;
(Ⅲ)若PC與平面ACM所成角為30°,求PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,輸出的S的值為(  )  
A.-$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知圓O:x2+y2=4與x軸負(fù)半軸的交點(diǎn)為A,點(diǎn)P在直線l:$\sqrt{3}$x+y-a=0上,過點(diǎn)P作圓O的切線,切點(diǎn)為T.
(1)若a=8,切點(diǎn)T($\sqrt{3}$,-1),求直線AP的方程;
(2)若PA=2PT,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=4sin2x的最小正周期為( 。
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC內(nèi)角A,B,C的對(duì)邊分別是a,b,c,已知a=$2\sqrt{3}$,c=$2\sqrt{2}$,∠A=60°,則∠C的大小為( 。
A.$\frac{π}{4}$或$\frac{3π}{4}$B.$\frac{π}{3}$或$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案