2.執(zhí)行如圖所示的程序框圖,輸出的S的值為( 。  
A.-$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

分析 根據(jù)條件,進(jìn)行模擬運(yùn)行,k=5時(shí),退出循環(huán),即可得出結(jié)論.

解答 解:由題意,k=5時(shí),退出循環(huán),S=cos$\frac{5π}{6}$=-$\frac{\sqrt{3}}{2}$,
故選:A

點(diǎn)評(píng) 本題主要考查程序框圖的識(shí)別和判斷,根據(jù)程序條件進(jìn)行模擬是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-t-lnx
(Ⅰ)若x=1是f(x)的極值點(diǎn),求t的值,并討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)t≤2時(shí),證明:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在等差數(shù)列{an}中,我們有$\frac{{{a_1}+{a_2}+{a_3}+{a_4}+{a_5}+{a_6}}}{6}$=$\frac{{{a_3}+{a_4}}}{2}$,則在正項(xiàng)等比數(shù)列{bn}中,我們可以得到類似的結(jié)論是$\root{6}{{{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}}}=\sqrt{{a_3}{a_4}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某船開始看見燈塔在南偏東30°方向,后來船沿南偏東60°的方向航行15$\sqrt{6}$km后,看見燈塔在正西方向,則這時(shí)船與燈塔的距離是( 。
A.15$\sqrt{3}$kmB.30kmC.15kmD.15$\sqrt{2}$km

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下面使用類比推理正確的是( 。
A.直線a,b,c,若a∥b,b∥c,則a∥c,類推出:向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,則$\overrightarrow a$∥$\overrightarrow c$
B.同一平面內(nèi),直線a,b,c,若a⊥c,b⊥c,則a∥b,類推出:空間中,直線a,b,c,若a⊥c,b⊥c,則a∥b
C.實(shí)數(shù)a,b,若方程x2+ax+b=0有實(shí)數(shù)根,則a2≥4b,類推出:復(fù)數(shù)a,b,若方程x2+ax+b=0有實(shí)數(shù)根,則a2≥4b
D.由向量加法的幾何意義,可以類比得到復(fù)數(shù)加法的幾何意義

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.將函數(shù)f(x)=cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象上的每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的一半,再將圖象向右平移$\frac{π}{6}$個(gè)單位長度得到函數(shù)y=sinx的圖象.
(1)直接寫出f(x)的表達(dá)式,并求出f(x)在[0,π]上的值域;
(2)求出f(x)在[0,π]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=cosx+$\frac{a}{2}$x2-1(a∈R).
(1)證明:當(dāng)a≥1時(shí),f(x)有唯一的零點(diǎn);
(2)若f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知F1,F(xiàn)2為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),M為橢圓C的上頂點(diǎn),且|MF1|=2,右焦點(diǎn)與右頂點(diǎn)的距離為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l與橢圓C相交于A,B兩點(diǎn),且直線OA,OB的斜率kOA,kOB滿足kOA•kOB=-$\frac{3}{4}$,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.化簡并計(jì)算:
(1)sin50°(1+$\sqrt{3}$tan10°);
(2)已知cos(α-$\frac{β}{2}$)=-$\frac{1}{3}$,α∈($\frac{π}{2}$,π),sin($\frac{α}{2}$-β)=$\frac{\sqrt{6}}{3}$,β∈(0,$\frac{π}{2}$),求cos(α+β)的值.

查看答案和解析>>

同步練習(xí)冊答案