【題目】將y=cosx的圖象上的所有點的縱坐標不變,橫坐標縮小到原來的一半,然后再將所得圖象向左平移 個單位長度,則最后所得圖象的解析式為( 。
A.y=cos(2x+ )
B.y=cos( + )
C.y=sin2x
D.y=﹣sin2x
【答案】D
【解析】解:將y=cosx的圖象上的所有點的縱坐標不變,橫坐標縮小到原來的一半,可得y=cos2x的圖象;
然后再將所得圖象向左平移 個單位長度,則最后所得圖象的解析式為y=cos2(x+ )=﹣sin2x,
所以答案是:D.
【考點精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足 ,若n∈N*時,anbn+1﹣bn+1=nbn .
(Ⅰ)求{bn}的通項公式;
(Ⅱ)設 ,求{Cn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某中學高三文科班學生共有800人參加了數(shù)學與地理的水平測試,學校決定利用隨機數(shù)表法從中抽取100人進行成績抽樣調查,先將800人按001,002,…,800進行編號.
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的數(shù)學與地理的水平測試成績如下表:
人數(shù) | 數(shù)學 | |||
優(yōu)秀 | 良好 | 及格 | ||
地理 | 優(yōu)秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | a | 4 | b |
成績分為優(yōu)秀、良好、及格三個等級;橫向、縱向分別表示地理成績與數(shù)學成績,例如:表中數(shù)學成績?yōu)榱己玫娜藬?shù)共有20+18+4=42.
①若在該樣本中,數(shù)學成績優(yōu)秀率是30%,求a,b的值;
②在地理成績及格的學生中,已知a≥11,b≥7,求數(shù)學成績優(yōu)秀人數(shù)比及格人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣kx+k(k∈R).
(Ⅰ)求f(x)在[1,2]上的最小值;
(Ⅱ)若 ,對x∈(﹣1,1)恒成立,求正數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中點,F(xiàn)是AB的中點.
(Ⅰ)求證:BE∥平面PDF;
(Ⅱ)求平面PAB與平面PCD所成的銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=|ax﹣1|,若實數(shù)a>0,不等式f(x)≤3的解集是{x|﹣1≤x≤2}.
(Ⅰ)求a的值;
(Ⅱ)若 <|k|存在實數(shù)解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出關于雙曲線的三個命題:
①雙曲線 ﹣ =1的漸近線方程是y=± x;
②若點(2,3)在焦距為4的雙曲線 ﹣ =1上,則此雙曲線的離心率e=2;
③若點F,B分別是雙曲線 ﹣ =1的一個焦點和虛軸的一個端點,則線段FB的中點一定不在此雙曲線的漸近線上.
其中正確命題的個數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P是圓F1:(x﹣1)2+y2=8上任意一點,點F2與點F1關于原點對稱,線段PF2的垂直平分線分別與PF1 , PF2交于M,N兩點.
(1)求點M的軌跡C的方程;
(2)過點 的動直線l與點M的軌跡C交于A,B兩點,在y軸上是否存在定點Q,使以AB為直徑的圓恒過這個點?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ ax2+bx+1的圖象在x=1處的切線l過點( , ).
(1)若函數(shù)g(x)=f(x)﹣(a﹣1)x(a>0),求g(x)最大值(用a表示);
(2)若a=﹣4,f(x1)+f(x2)+x1+x2+3x1x2=2,證明:x1+x2≥ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com