(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
定義變換可把平面直角坐標(biāo)系上的點(diǎn)變換到這一平面上的點(diǎn).特別地,若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱點(diǎn)是曲線在變換下的不動點(diǎn).
(1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時(shí),其兩個(gè)焦點(diǎn)、經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);
(2)當(dāng)時(shí),求(1)中的橢圓在變換下的所有不動點(diǎn)的坐標(biāo);
(3)試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的雙曲線在變換
,)下的不動點(diǎn)的存在情況和個(gè)數(shù).
(1)(2)(3)兩個(gè)
(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為),由橢圓定義知焦距,即…①.
又由條件得…②,故由①、②可解得,.
即橢圓的標(biāo)準(zhǔn)方程為.
且橢圓兩個(gè)焦點(diǎn)的坐標(biāo)分別為.
對于變換,當(dāng)時(shí),可得
設(shè)分別是由的坐標(biāo)由變換公式變換得到.于是,,即的坐標(biāo)為;
的坐標(biāo)為.
(2)設(shè)是橢圓在變換下的不動點(diǎn),則當(dāng)時(shí),
,由點(diǎn),即,得:
,因而橢圓的不動點(diǎn)共有兩個(gè),分別為.
(3) 設(shè)是雙曲線在變換下的不動點(diǎn),則由

因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140147920438.gif" style="vertical-align:middle;" />,,故.
不妨設(shè)雙曲線方程為),由代入得
則有,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140149261394.gif" style="vertical-align:middle;" />,故當(dāng)時(shí),方程無解;
當(dāng)時(shí),要使不動點(diǎn)存在,則需
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823140149261394.gif" style="vertical-align:middle;" />,故當(dāng)時(shí),雙曲線在變換下一定有2個(gè)不動點(diǎn),否則不存在不動點(diǎn).
進(jìn)一步分類可知:
(i)當(dāng),時(shí),即雙曲線的焦點(diǎn)在軸上時(shí),
;
此時(shí)雙曲線在變換下一定有2個(gè)不動點(diǎn);
(ii)當(dāng),時(shí),即雙曲線的焦點(diǎn)在軸上時(shí),
.
此時(shí)雙曲線在變換下一定有2個(gè)不動點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若給定橢圓C:ax2+by2=1(a>0,b>0,ab)和點(diǎn)N(x0,y0),則稱直線l:ax0x+by0y=1為橢圓C的“伴隨直線”,
(1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關(guān)系(當(dāng)直線與橢圓的交點(diǎn)個(gè)數(shù)為0個(gè)、1個(gè)、2個(gè)時(shí),分別稱直線與橢圓相離、相切、相交),并說明理由;
(2)命題:“若點(diǎn)N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫出這個(gè)命題的逆命題,判斷此逆命題的真假,說明理由;
(3)若N(x0,y0)在橢圓C的內(nèi)部,過N點(diǎn)任意作一條直線,交橢圓C于A、B,交l于M點(diǎn)(異于A、B),設(shè),,問是否為定值?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓C的離心率為,且經(jīng)過點(diǎn),過點(diǎn)P(2,1)的直線與橢圓C在第一象限相切于點(diǎn)M .
(1)求橢圓C的方程;
(2)求直線的方程以及點(diǎn)M的坐標(biāo);
(3)是否存過點(diǎn)P的直線與橢圓C相交于不同的兩點(diǎn)A、B,滿足?若存在,求出直線l1的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本題滿分13分)
設(shè)橢圓的左、右焦點(diǎn)分別為F1與F2,直線過橢圓的一個(gè)焦點(diǎn)F2且與橢圓交于P、Q兩點(diǎn),若的周長為。
(1)求橢圓C的方程;
(2)設(shè)橢圓C經(jīng)過伸縮變換變成曲線,直線與曲線相切且與橢圓C交于不同的兩點(diǎn)A、B,若,求面積的取值范圍。(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與坐標(biāo)軸的交點(diǎn)分別是一個(gè)橢圓的焦點(diǎn)和頂點(diǎn),則此橢圓的離心率為 。ā  。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,過橢圓的左焦點(diǎn)x軸的垂線交橢圓于點(diǎn)P,點(diǎn)A和點(diǎn)B分別為橢圓的右頂點(diǎn)和上頂點(diǎn),OPAB
(1)求橢圓的離心率e(2)過右焦點(diǎn)作一條弦QR,使QRAB.若△的面積為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若方程表示焦點(diǎn)在y軸上的橢圓,則m的取值范圍為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓的右焦點(diǎn)且垂直于軸的直線與橢圓交于兩點(diǎn),以為直徑的圓恰好過左焦點(diǎn),則橢圓的離心率等于              。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是以,為焦點(diǎn)的橢圓上的一點(diǎn),若,,則此橢圓的離心率為____________.

查看答案和解析>>

同步練習(xí)冊答案