對于函數(shù)若存在,使得成立,則稱的不動點(diǎn).
已知
(1)當(dāng)時(shí),求函數(shù)的不動點(diǎn);
(2)若對任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動點(diǎn),求的取值范圍;
(3)在(2)的條件下,若圖象上、兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動點(diǎn),且、兩點(diǎn)關(guān)于直線對稱,求的最小值.

(1)-1和3;(2);(3)

解析試題分析:(1)根據(jù)不動點(diǎn)的定義,本題實(shí)質(zhì)是求方程的解;(2)函數(shù)恒有兩個(gè)相異的不動點(diǎn)即方程恒有兩個(gè)不等實(shí)根,對應(yīng)的判別式恒成立;(3)、兩點(diǎn)關(guān)于直線對稱,可用的結(jié)論有:①直線AB與直線垂直,即斜率互為負(fù)倒數(shù);②線段AB的中點(diǎn)在直線上.注意不動點(diǎn)A、B所在直線AB的斜率為1.
試題解析: (1)時(shí),,
 
函數(shù)的不動點(diǎn)為-1和3;
(2)即有兩個(gè)不等實(shí)根,轉(zhuǎn)化為有兩個(gè)不等實(shí)根,需有判別式大于0恒成立
,
的取值范圍為;
(3)設(shè),則,
的中點(diǎn)的坐標(biāo)為,即
兩點(diǎn)關(guān)于直線對稱,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0d/7/icjmw1.png" style="vertical-align:middle;" />在直線上, ,
的中點(diǎn)在直線上,

利用基本不等式可得當(dāng)且僅當(dāng)時(shí),b的最小值為.
考點(diǎn):(1)解方程;(2)二次方程有兩個(gè)不等實(shí)根的條件;(3)直線的對稱點(diǎn)問題及最小值問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

一種放射性元素,最初的質(zhì)量為,按每年衰減.
(1)求年后,這種放射性元素的質(zhì)量的函數(shù)關(guān)系式;
(2)求這種放射性元素的半衰期(質(zhì)量變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic5/tikupic/5a/e/gwqi81.png" style="vertical-align:middle;" />時(shí)所經(jīng)歷的時(shí)間).(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

化簡或求值:
(1);
(2)計(jì)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

集合A是由適合以下性質(zhì)的函數(shù)構(gòu)成的:對于定義域內(nèi)任意兩個(gè)不相等的實(shí)數(shù),都有.
(1)試判斷=是否在集合A中,并說明理由;
(2)設(shè)ÎA且定義域?yàn)?0,+¥),值域?yàn)?0,1),,試寫出一個(gè)滿足以上條件的函數(shù)的解析式,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,為其反函數(shù).
(Ⅰ)說明函數(shù)圖象的關(guān)系(只寫出結(jié)論即可);
(Ⅱ)證明的圖象恒在的圖象的上方;
(Ⅲ)設(shè)直線、均相切,切點(diǎn)分別為()、(),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為30元,并且每件產(chǎn)品須向總公司繳納a元(a為常數(shù),2≤a≤5)的管理費(fèi),根據(jù)多年的統(tǒng)計(jì)經(jīng)驗(yàn),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為x元時(shí),產(chǎn)品一年的銷售量為(e為自然對數(shù)的底數(shù))萬件,已知每件產(chǎn)品的售價(jià)為40元時(shí),該產(chǎn)品一年的銷售量為500萬件.經(jīng)物價(jià)部門核定每件產(chǎn)品的售價(jià)x最低不低于35元,最高不超過41元.
(Ⅰ)求分公司經(jīng)營該產(chǎn)品一年的利潤L(x)萬元與每件產(chǎn)品的售價(jià)x元的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該產(chǎn)品一年的利潤L(x)最大,并求出L(x)的最大值.
參考公式:為常數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求證不論為何實(shí)數(shù),總是增函數(shù);
(2)確定的值,使為奇函數(shù);
(3)當(dāng)為奇函數(shù)時(shí),求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(Ⅰ)若函數(shù)上至少有一個(gè)零點(diǎn),求的取值范圍;
(Ⅱ)若函數(shù)上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中是自然對數(shù)的底數(shù),
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖象與函數(shù)的圖象有3個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案