集合A是由適合以下性質(zhì)的函數(shù)構(gòu)成的:對(duì)于定義域內(nèi)任意兩個(gè)不相等的實(shí)數(shù),都有.
(1)試判斷=是否在集合A中,并說明理由;
(2)設(shè)ÎA且定義域?yàn)?0,+¥),值域?yàn)?0,1),,試寫出一個(gè)滿足以上條件的函數(shù)的解析式,并給予證明.

(1),;(2)

解析試題分析:(1)根據(jù)題目給出的性質(zhì)對(duì)函數(shù)進(jìn)行判斷即可;(2)可以模仿(1)中的函數(shù)進(jìn)行尋找,或者可以這么找,因?yàn)槲覀儗W(xué)了指數(shù)、對(duì)數(shù)、冪函數(shù),而(1)中已經(jīng)出現(xiàn)了對(duì)數(shù)函數(shù)與冪函數(shù),所以是否可以考慮從指數(shù)函數(shù)中尋找.
試題解析:(1),.                   2分
對(duì)于的證明. 任意,

. ∴             4分
對(duì)于,舉反例:當(dāng),時(shí),
,
,
不滿足. ∴.            7分
⑵函數(shù),當(dāng)時(shí),值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e0/9/tdio12.png" style="vertical-align:middle;" />且.  9分
任取,則

. ∴.          14分
考點(diǎn):1.函數(shù)性質(zhì);2.新定義型解答題;3.指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、指數(shù)函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè) 
(Ⅰ)當(dāng),解不等式
(Ⅱ)當(dāng)時(shí),若,使得不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

島A觀察站發(fā)現(xiàn)在其東南方向有一艘可疑船只,正以每小時(shí)10海里的速度向東南方向航行,觀察站即刻通知在島A正南方向B處巡航的海監(jiān)船前往檢查.接到通知后,海監(jiān)船測得可疑船只在其北偏東75°方向且相距10海里的C處,隨即以每小時(shí)10 海里的速度前往攔截.
(I)問:海監(jiān)船接到通知時(shí),距離島A多少海里?
(II)假設(shè)海監(jiān)船在D處恰好追上可疑船只,求它的航行方向及其航行的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求值:
(1)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)若關(guān)于的方程有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),如果函數(shù)恰有兩個(gè)不同的極值點(diǎn),,且.
(Ⅰ)證明:;
(Ⅱ)求的最小值,并指出此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對(duì)于函數(shù)若存在,使得成立,則稱的不動(dòng)點(diǎn).
已知
(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求的取值范圍;
(3)在(2)的條件下,若圖象上、兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且、兩點(diǎn)關(guān)于直線對(duì)稱,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

“城中觀海”是近年來國內(nèi)很多大中型城市內(nèi)澇所致的現(xiàn)象,究其原因,除天氣因素、城市規(guī)劃等原因外,城市垃圾雜物也是造成內(nèi)澇的一個(gè)重要原因。暴雨會(huì)沖刷城市的垃圾雜物一起進(jìn)入下水道,據(jù)統(tǒng)計(jì),在不考慮其它因素的條件下,某段下水道的排水量V(單位:立方米/小時(shí))是雜物垃圾密度x(單位:千克/立方米)的函數(shù)。當(dāng)下水道的垃圾雜物密度達(dá)到2千克/立方米時(shí),會(huì)造成堵塞,此時(shí)排水量為0;當(dāng)垃圾雜物密度不超過0.2千克/立方米時(shí),排水量是90立方米/小時(shí);研究表明,時(shí),排水量V是垃圾雜物密度x的一次函數(shù)。
(Ⅰ)當(dāng)時(shí),求函數(shù)V(x)的表達(dá)式;
(Ⅱ)當(dāng)垃圾雜物密度x為多大時(shí),垃圾雜物量(單位時(shí)間內(nèi)通過某段下水道的垃圾雜物量,單位:千克/小時(shí))可以達(dá)到最大,求出這個(gè)最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠有名工人,現(xiàn)接受了生產(chǎn)臺(tái)型高科技產(chǎn)品的總?cè)蝿?wù).已知每臺(tái)型產(chǎn)品由個(gè)型裝置和個(gè)型裝置配套組成,每個(gè)工人每小時(shí)能加工個(gè)型裝置或個(gè)型裝置.現(xiàn)將工人分成兩組同時(shí)開始加工,每組分別加工一種裝置(完成自己的任務(wù)后不再支援另一組).設(shè)加工型裝置的工人有人,他們加工完型裝置所需時(shí)間為,其余工人加工完型裝置所需時(shí)間為(單位:小時(shí),可不為整數(shù)).
(1)寫出、的解析式;
(2)寫出這名工人完成總?cè)蝿?wù)的時(shí)間的解析式;
(3)應(yīng)怎樣分組,才能使完成總?cè)蝿?wù)用的時(shí)間最少?

查看答案和解析>>

同步練習(xí)冊(cè)答案