,使成立,則實(shí)數(shù)的取值范圍為(    )
A.B.C.D.
D

試題分析:為使成立,則=0或,即=0或1,
點(diǎn)評:簡單題,存在性命題就是,有使結(jié)論成立的條件。即符合“充分條件”。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知.
(1)若,解不等式;
(2)若不等式對一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(3)若,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)解關(guān)于的不等式
(2)若,的解集非空,求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(1)若函數(shù)處的切線方程為,求實(shí)數(shù)的值;
(2)若在其定義域內(nèi)單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是定義在上的非負(fù)可導(dǎo)函數(shù),且滿足,對任意正數(shù),若,則必有( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中
(1)當(dāng)a=1時,求它的單調(diào)區(qū)間;
(2)當(dāng)時,討論它的單調(diào)性;
(3)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在某服裝批發(fā)市場,某種品牌的時裝當(dāng)季節(jié)將來臨時,價格呈上升趨勢,設(shè)這種時裝開始時定價為20元,并且每周(7天)漲價2元,從第6周開始保持30元的價格平穩(wěn)銷售;從第12周開始,當(dāng)季節(jié)即將過去時,平均每周減價2元,直到第16周周末,該服裝不再銷售。
⑴試建立銷售價y與周次x之間的函數(shù)關(guān)系式;
⑵若這種時裝每件進(jìn)價Z與周次次之間的關(guān)系為Z=,1≤≤16,且為整數(shù),試問該服裝第幾周出售時,每件銷售利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)映射是集合到集合的映射。若對于實(shí)數(shù),在中不存在對應(yīng)的元素,則實(shí)數(shù)的取值范圍是(   )
A.      B.    C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)在區(qū)間()的導(dǎo)函數(shù),在區(qū)間()的導(dǎo)函數(shù),若在區(qū)間()上恒成立,則稱函數(shù)在區(qū)間()為凸函數(shù),已知若當(dāng)實(shí)數(shù)滿足時,函數(shù)上為凸函數(shù),則最大值 (    )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案