設函數(shù)在區(qū)間()的導函數(shù),在區(qū)間()的導函數(shù),若在區(qū)間()上恒成立,則稱函數(shù)在區(qū)間()為凸函數(shù),已知若當實數(shù)滿足時,函數(shù)上為凸函數(shù),則最大值 (    )
A.1B.2C.3D.4
D

試題分析:,函數(shù)上為凸函數(shù),對于恒成立,
設函數(shù)與x軸交點橫坐標為的最大值為
最大值為4
點評:本題根據(jù)題目中凸函數(shù)的定義可知對于函數(shù)滿足性質(zhì)對于恒成立,進而結(jié)合二次函數(shù)性質(zhì)求得最大值
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

動點P從邊長為1的正方形ABCD的頂點A出發(fā)順次經(jīng)過B、C、D,再回到A,設表示P點行程,表PA的長,求關于的函數(shù)關系式。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,使成立,則實數(shù)的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知,為自然對數(shù)的底數(shù)).
(1)求的極值;
(2)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù) .若數(shù)列滿足,則實數(shù)的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場售價與上市時間的關系用圖1的一條折線表示;西紅柿的種植成本與上市時間的關系用圖2的拋物線表示.
(1)寫出圖1表示的市場售價與時間的函數(shù)關系式;寫出圖2表示的種植成本與時間的函數(shù)關系式
(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿純收益最大?

(注:市場售價和種植成本的單位:元/百千克,時間單位:天)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為定義在上的可導函數(shù),且對于恒成立,且為自然對數(shù)的底,則(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

有三張正面分別寫有數(shù)字—2,—1,1的卡片,它們的背面完全相同,將這三張卡片背面朝上洗勻后隨機抽取一張,以其正面的數(shù)字作為x的值。放回卡片洗勻,再從三張卡片中隨機抽取一張,以其正面的數(shù)字作為y的值,兩次結(jié)果記為(x,y)。
(1)用樹狀圖或列表法表示(x,y)所有可能出現(xiàn)的結(jié)果;
(2)求使分式有意義的(x,y)出現(xiàn)的概率;
(3)化簡分式;并求使分式的值為整數(shù)的(x,y)出現(xiàn)的概率。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是(  )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案