21.(本小題滿分14分)
已知直線過拋物線的焦點且與拋物線相交于兩點,自向準(zhǔn)線作垂線,垂足分別為 
(1)求拋物線的方程;
(2)證明:無論取何實數(shù)時,,都是定值;
(3)記的面積分別為,試判斷是否成立,并證明你的結(jié)論.

(1)解:由條件知在直線上,即

所以拋物線的方程為.………………3分
(2) 由 得.…………4分
.………………5分
,即有定值,.………………7分
(3) 根據(jù)條件有
由拋物線的定義得,………………9分
于是,.………11分
……………12分

 ,
則有.………………14分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓中心在坐標(biāo)原點,是它的兩個頂點,直線與AB相交于點D,與橢圓相交于E、F兩點.
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,記點P的軌跡為E.
(1)求軌跡E的方程;
(2)設(shè)直線l過點F2且與軌跡E交于P、Q兩點,若無論直線l繞點F2怎樣轉(zhuǎn)動,在x軸上總存在定點,使恒成立,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知直線相交于A、B兩點。
(1)若橢圓的離心率為,焦距為2,求橢圓的標(biāo)準(zhǔn)方程;
(2)若(其中O為坐標(biāo)原點),當(dāng)橢圓的離率時,求橢圓的長軸長的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在極坐標(biāo)系中,以極點為坐標(biāo)原點,極軸為x軸正半軸,建立直角坐標(biāo)系,點M(2,)的直角坐標(biāo)是(  )

A.(2,1) B.(,1) C.(1,D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在極坐標(biāo)系中,點A)到直線的距離是(   ).

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知:橢圓的左右焦點為;直線經(jīng)過交橢圓于兩點.
(1)求證:的周長為定值.
(2)求的面積的最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)設(shè)、分別是橢圓,的左、右焦點,是該橢圓上一個動點,且,。
、求橢圓的方程;
、求出以點為中點的弦所在的直線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分) 雙曲線的兩條漸近線的方程為y=±x,且經(jīng)過點(3,-2).(1)求雙曲線的方程;(2)過雙曲線的右焦點F且傾斜角為60°的直線交雙曲線于A、B兩點,求|AB|.

查看答案和解析>>

同步練習(xí)冊答案