為了了解我校2012年高考準(zhǔn)備報(bào)考“體育特長(zhǎng)生”的學(xué)生體重情況,將所得的數(shù)據(jù)整理后,畫(huà)出了頻率分布直方圖(如圖),已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,第2小組的頻數(shù)為12,則報(bào)考“體育特長(zhǎng)生”的學(xué)生人數(shù)是
 
考點(diǎn):頻率分布直方圖
專(zhuān)題:概率與統(tǒng)計(jì)
分析:由頻率分布直方圖先求出前3個(gè)小組的頻率,從而得到第2小組的頻率,由此能求出報(bào)考“體育特長(zhǎng)生”的學(xué)生人數(shù).
解答: 解:由頻率分布直方圖知:
前3個(gè)小組的頻率為:1-(0.013+0.037)×5=0.75,
所以第2小組的頻率為0.75×
2
6
=0.25

所以報(bào)考“體育特長(zhǎng)生”的學(xué)生人數(shù)是12÷0.25=48.
故答案為:48.
點(diǎn)評(píng):本題考查報(bào)考“體育特長(zhǎng)生”的學(xué)生人數(shù)的求法,是基礎(chǔ)題,解題時(shí)要注意頻率分布直方圖的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列以x為自變量的函數(shù)中,是指數(shù)函數(shù)的是(  )
A、y=(-3)x
B、y=ex(e=2.718 28…)
C、y=-4x
D、y=ax+2(x>0且a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)x+y=2a與圓x2+y2=4交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn),向量
OA
OB
滿(mǎn)足|
OA
+
OB
|=|
OA
-
OB
|,則實(shí)數(shù)a的值為( 。
A、2
B、2或-2
C、1或-1
D、
6
-
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面向量
a
,
b
的夾角為60°,
a
=(2,
5
),|
b
|=2,則|
a
+2
b
|=( 。
A、6
B、
37
C、7
D、
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y1=2x與y2=x2,當(dāng)x>0時(shí),圖象的交點(diǎn)個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是公比為q的等比數(shù)列,且a1,a3,a2成等差數(shù)列,求q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,且SD=AD=
2
AB,E是SA的中點(diǎn).
(Ⅰ)求證:平面BED⊥平面SAB;
(Ⅱ)求三棱錐S-BDE與四棱錐S-ABCD體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-
4
3
ax+b,f(1)=2,f′(1)=1.
(1)求f(x)的解析式;
(2)求過(guò)P(0,1)且與曲線(xiàn)y=f(x)相切的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程x2+(1+a)x+1+a+b=0的兩根為x1,x2,并且0<x1<1<x2,則
b
a
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案