15.四棱柱ABCD-A1B1C1D1的三視圖如圖所示,則異面直線D1C與AC1所成的角為( 。
A.30°B.45°C.60°D.90°

分析 判斷幾何體是四棱柱為直四棱柱且底面為直角梯形,連結(jié)C1D,證明DC1⊥D1C,AD⊥DC1,得到DC1⊥平面ADC1,進而得到DC1⊥AC1

解答 解:由三視圖得,該四棱柱為直四棱柱且底面為直角梯形,

在直四棱柱ABCD-A1B1C1D1中,連結(jié)C1D,
∵DC=DD1,
∴四邊形DCC1D1是正方形,
∴DC1⊥D1C.
又AD⊥CD,AD⊥DD1,DC∩DD1=D,
∴又AD⊥平面DCC1D1,DC1?平面DCC1D1
∴AD⊥DC1
∵AD,DC1?平面ADC1,且AD∩DC1=D,
∴DC1⊥平面ADC1,
又AC1?平面ADC1,
∴DC1⊥AC1;
即異面直線D1C與AC1所成的角為90°,
故選:D.

點評 本題考查的知識點是棱柱的幾何特征,直線與平面垂直的判定與性質(zhì),異面直線的夾角,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.設(shè)$(f(x,y))=({\begin{array}{l}xy1\end{array}})({\begin{array}{l}1&0&1\\ 0&1&1\\ 1&1&{-2}\end{array}})({\begin{array}{l}x\\ y\\ 1\end{array}})$,點A(x1,y1)滿足方程f(x,y)=0,點B(-1,-1).
(1)計算$|{\overrightarrow{AB}}$|; 
(2)O為坐標原點,當$\overrightarrow{AO}$⊥$\overrightarrow{BO}$時,計算$|{\overrightarrow{AO}}$|; 
(3)求$|{\overrightarrow{OA}}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖已知橢圓C:$\frac{{x}^{2}}{4}$+y2=1,以橢圓的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0).設(shè)圓T與橢圓C交于點M與點N.
(1)求$\overrightarrow{TM}$•$\overrightarrow{TN}$的最小值;
(2)設(shè)點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:丨OR丨•丨OS丨為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.定義在R上的函數(shù)f(x)滿足f′(x)<1,f(1)=2,則滿足f(2x-1)<2x的x的范圍是( 。
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在△ABC中,已知cosBcosC=sin2$\frac{A}{2}$,則△ABC的形狀是(  )
A.直角三角形B.等邊三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知拋物線C:x2=4y,點M(x0,y0)滿足$x_0^2<4{y_0}$,則直線l:x-x0=t(y-y0),(t∈R)與拋物線C公共點的個數(shù)是( 。
A.0B.1C.2D.1或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知圓C:x2+y2=5.
(1)求直線y=x+2被圓C截得的弦長;
(2)求過點$N(\begin{array}{l}{1,}3\end{array})$的圓的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為菱形,∠ABC=60°,AB=2PA,E是線段BC的中點.
(Ⅰ)求異面直線PE和CD所成的角的余弦值;
(Ⅱ)求平面PAE與平面PCD所成銳二面角的余弦值;
(Ⅲ)在線段PD上是否存在一點F,使得CF∥平面PAE,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)A1,A2,A3,…,An是集合{1,2,3,…,n}的n個非空子集(n≥2),定義aij=$\left\{\begin{array}{l}{0{,A}_{i}∩{A}_{j}=∅}\\{1,{A}_{i}∩{A}_{j}≠∅}\end{array}\right.$,其中i,j=1,2,…,n,這樣得到的n2個數(shù)之和記為S(A1,A2,A3,…,An),簡記為S,下列三種說法:①S與n的奇偶性相同;②S是n的倍數(shù);③S的最小值為n,最大值為n2.其中正確的判斷是(  )
A.①②B.①③C.②③D.

查看答案和解析>>

同步練習冊答案