分析 求出直線l的參數(shù)方程,分別代入l1和l2求出兩交點對應的參數(shù),則兩參數(shù)差的絕對值為兩交點的距離.
解答 解:直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{17}}{17}t}\\{y=-4+\frac{4\sqrt{17}}{17}t}\end{array}\right.$(t為參數(shù)).
把$\left\{\begin{array}{l}{x=\frac{\sqrt{17}}{17}t}\\{y=-4+\frac{4\sqrt{17}}{17}t}\end{array}\right.$(t為參數(shù))代入x-2y-2=0得-$\frac{7\sqrt{17}}{17}t+6=0$,∴t=$\frac{6\sqrt{17}}{7}$.
把$\left\{\begin{array}{l}{x=\frac{\sqrt{17}}{17}t}\\{y=-4+\frac{4\sqrt{17}}{17}t}\end{array}\right.$(t為參數(shù))代入4x+3y-12=0得$\frac{16\sqrt{17}}{17}t$-24=0,解得t=$\frac{3\sqrt{17}}{2}$.
∴$\frac{3\sqrt{17}}{2}$-$\frac{6\sqrt{17}}{7}$=$\frac{9\sqrt{17}}{14}$.
∴直線l與l1,l2的交點間的距離為$\frac{9\sqrt{17}}{14}$.
點評 本題考查了直線的參數(shù)的幾何意義,直線的交點坐標,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com