【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對任意正整數(shù)n都有an是n與Sn的等差中項(xiàng),bn=an+1.
(1)求證:數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)bn;
(2)若數(shù)列{Cn}滿足Cn= 且數(shù)列{C }的前n項(xiàng)和為Tn , 證明Tn<2.

【答案】
(1)證明:∵an是n與的等差中項(xiàng),

2an=n+Sn

∴2an1=n﹣1+Sn1,(n≥2),

兩式相減得:2an﹣2an1=1+an,

an=2an1+1,(n≥2),

∴an+1=2(an1+1),

∴bn=2bn1,

=2,當(dāng)n=1,2a1=1+S1,

∴a1=1,b1=2,

∴數(shù)列{bn}是等比數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列,

bn=2n,


(2)證明:數(shù)列{Cn}滿足Cn= = ,

∴C = ,

當(dāng)n=1時(shí),T1= =1<2,命題成立,

當(dāng)n≥2, ,

<1+ + +…+ ,

=1+1﹣ + +…+ ,

=2﹣ <2,命題成立.


【解析】(Ⅰ)由an是n與Sn的等差中項(xiàng),2an=n+Sn , 當(dāng)n≥2,2an1=n﹣1+Sn1 , 相減得:2an﹣2an1=1+an , 化簡整理得:an+1=2(an1+1),bn=2bn1 , b1=2,數(shù)列{bn}是等比數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列;(Ⅱ)數(shù)列{Cn}滿足Cn= ,C = ,分類當(dāng)n=1, =1<2命題成立,當(dāng)n≥2時(shí), <1+ + +…+ ,采用裂項(xiàng)法,求得Tn=2﹣ <2,命題成立.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等比數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識,掌握通項(xiàng)公式:,以及對數(shù)列的前n項(xiàng)和的理解,了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項(xiàng)和,且a10=19,S10=100;數(shù)列{bn}對任意n∈N* , 總有b1b2b3…bn1bn=an+2成立.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)記cn=(﹣1)n ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)城校區(qū)與本部校區(qū)之間的駕車單程所需時(shí)間為,只與道路暢通狀況有關(guān),對其容量為500的樣本進(jìn)行統(tǒng)計(jì),結(jié)果如下:

(分鐘)

25

30

35

40

頻數(shù)(次)

100

150

200

50

以這500次駕車單程所需時(shí)間的頻率代替某人1次駕車單程所需時(shí)間的概率.

(1)求的分布列與;

(2)某天有3位教師獨(dú)自駕車從大學(xué)城校區(qū)返回本部校區(qū),記表示這3位教師中駕車所用時(shí)間少于的人數(shù),求的分布列與;

(3)下周某天張老師將駕車從大學(xué)城校區(qū)出發(fā),前往本部校區(qū)做一個50分鐘的講座,結(jié)束后立即返回大學(xué)城校區(qū),求張老師從離開大學(xué)城校區(qū)到返回大學(xué)城校區(qū)共用時(shí)間不超過120分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,其中左焦點(diǎn)(-2,0).

1) 求橢圓C的方程;

2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=1+x﹣ + ﹣…+ + ,則下列結(jié)論正確的是(
A.f(x)在(0,1)上恰有一個零點(diǎn)
B.f(x)在(0,1)上恰有兩個零點(diǎn)
C.f(x)在(﹣1,0)上恰有一個零點(diǎn)
D.f(x)在(﹣1,0)上恰有兩個零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1 =1(a>b>0)的離心率為e= ,且過點(diǎn)(1, ).拋物線C2:x2=﹣2py(p>0)的焦點(diǎn)坐標(biāo)為(0,﹣ ).
(Ⅰ)求橢圓C1和拋物線C2的方程;
(Ⅱ)若點(diǎn)M是直線l:2x﹣4y+3=0上的動點(diǎn),過點(diǎn)M作拋物線C2的兩條切線,切點(diǎn)分別為A,B,直線AB交橢圓C1于P,Q兩點(diǎn).
(i)求證直線AB過定點(diǎn),并求出該定點(diǎn)坐標(biāo);
(ii)當(dāng)△OPQ的面積取最大值時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是(
A.若ξ服從正態(tài)分布N(0,2),且P(ξ>2)=0.4,則P(0<ξ<2)=0.2
B.x=1是x2﹣x=0的必要不充分條件
C.直線ax+y+2=0與ax﹣y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1 =1(a>b>0)的離心率為e= ,且過點(diǎn)(1, ).拋物線C2:x2=﹣2py(p>0)的焦點(diǎn)坐標(biāo)為(0,﹣ ).
(Ⅰ)求橢圓C1和拋物線C2的方程;
(Ⅱ)若點(diǎn)M是直線l:2x﹣4y+3=0上的動點(diǎn),過點(diǎn)M作拋物線C2的兩條切線,切點(diǎn)分別為A,B,直線AB交橢圓C1于P,Q兩點(diǎn).
(i)求證直線AB過定點(diǎn),并求出該定點(diǎn)坐標(biāo);
(ii)當(dāng)△OPQ的面積取最大值時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式|2x﹣1|<1的解集為M,a∈M,b∈M
(1)試比較ab+1與a+b的大小
(2)設(shè)max表示數(shù)集A的最大數(shù),h=max{ , , },求證h≥2.

查看答案和解析>>

同步練習(xí)冊答案