(本小題滿分12分)
已知展開式中最后三項(xiàng)的系數(shù)的和是方程的正數(shù)解,它的中間項(xiàng)是,求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)如果展開式中,第四項(xiàng)與第六項(xiàng)的系數(shù)相等。求,并求展開式中的常數(shù)項(xiàng);
(2)求展開式中的所有的有理項(xiàng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
有4名男生、5名女生,全體排成一行,問(wèn)下列情形各有多少種不同的排法?
(1)甲不在中間也不在兩端;(2)甲、乙兩人必須排在兩端;
(3)男、女生分別排在一起;(4)男女相間;
(5)甲、乙、丙三人從左到右順序保持一定.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
用紅、黃、藍(lán)、白、黑五種顏色在田字形的四個(gè)小方格內(nèi),每格涂一種顏色,相鄰兩格涂不同的顏色,如果顏色可以反復(fù)使用。
(1)從中任選四種顏色涂色,有多少種不同的涂法?
(2)按要求任意選色涂,共有多少種不同的涂法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分15分)若展開式中前三項(xiàng)系數(shù)成等差數(shù)列.
(1)求n的值;
(2)求展開式中第4項(xiàng)的系數(shù)和二項(xiàng)式系數(shù);
(3)求展開式中x的一次項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
求3名男生和4名女生按下列要求排成一排的排法總數(shù)(結(jié)果用數(shù)字表示)
(1)男生甲只排中間或兩頭; (2)所有女生排在一起
(3)男生不相鄰 (4)男生甲在女生乙的左邊(可以不相鄰)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,,滿足
(1)計(jì)算、、、,并猜想的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明你猜想的的表達(dá)式。(13分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)在二項(xiàng)式的展開式中,若第5項(xiàng),第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,
(Ⅰ)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng);
(Ⅱ)若前三項(xiàng)的二項(xiàng)式系數(shù)和等于79,求展開式中系數(shù)最大的項(xiàng)是第幾項(xiàng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數(shù)為11.
(1)求x2的系數(shù)的最小值;
(2)當(dāng)x2的系數(shù)取得最小值時(shí),求f (x)展開式中x的奇次冪項(xiàng)的系數(shù)之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系數(shù)為
+22=+2n(n-1)=+(11-m)(-1)=(m-)2+.
∵m∈N*,∴m=5時(shí),x2的系數(shù)取最小值22,此時(shí)n=3.
(2)由(1)知,當(dāng)x2的系數(shù)取得最小值時(shí),m=5,n=3,
∴f (x)=(1+x)5+(1+2x)3.設(shè)這時(shí)f (x)的展開式為f (x)=a0+a1x+a2x2+…+a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+33,
令x=-1,a0-a1+a2-a3+a4-a5=-1,
兩式相減得2(a1+a3+a5)=60, 故展開式中x的奇次冪項(xiàng)的系數(shù)之和為30.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com