16.已知平面內(nèi)點(diǎn)P(x,y)滿足$\left\{\begin{array}{l}{2x+3y≤12}\\{2x+y≥4}\\{y≥0}\end{array}\right.$,O為坐標(biāo)原點(diǎn),則目標(biāo)函數(shù)z=$\frac{2y+6}{3x+9}$的取值范圍為[$\frac{2}{9}$,$\frac{14}{9}$].

分析 作出可行域,z表示區(qū)域內(nèi)的點(diǎn)與D(-3,-3)連線的斜率的三分之二,數(shù)形結(jié)合可得.

解答 解:作出不等式組$\left\{\begin{array}{l}{2x+3y≤12}\\{2x+y≥4}\\{y≥0}\end{array}\right.$所對(duì)應(yīng)的可行域(如圖陰影△ABC),
z=$\frac{2y+6}{3x+9}$=$\frac{2}{3}$•$\frac{y+3}{x+3}$表示區(qū)域內(nèi)的點(diǎn)與D(-3,-3)連線的斜率的三分之二,
數(shù)形結(jié)合可得當(dāng)取區(qū)域內(nèi)的點(diǎn)A(0,4)時(shí),z取最大值$\frac{14}{9}$,
當(dāng)取區(qū)域內(nèi)的點(diǎn)B(6,0)時(shí),z取最小值$\frac{2}{9}$.
∴目標(biāo)函數(shù)z=$\frac{2y+6}{3x+9}$的取值范圍為[$\frac{2}{9}$,$\frac{14}{9}$]
故答案為:[$\frac{2}{9}$,$\frac{14}{9}$].

點(diǎn)評(píng) 本題考查簡(jiǎn)單線性規(guī)劃,準(zhǔn)確作圖是解決問(wèn)題的關(guān)鍵,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知正項(xiàng)等差數(shù)列{an}滿足a2+a4+a6=9,則log3(a1+$\frac{1}{2}{a}_{3}$+$\frac{1}{2}{a}_{5}$+a7)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.編寫一個(gè)程序,求使不等式1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>10成立的最小自然數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在平行六面體ABCD-A1B1C1D1中,M為AC與D的交點(diǎn),若$\overrightarrow{{A}_{1}{B}_{1}}$=$\overrightarrow{a}$,$\overrightarrow{A{{\;}_{1}D}_{1}}$=$\overrightarrow$,$\overrightarrow{{A}_{1}A}$=$\overrightarrow{c}$,用基底{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}表示向量$\overrightarrow{{C}_{1}M}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.log${\;}_{\sqrt{2}}$27×log${\;}_{\frac{1}{3}}$8=( 。
A.12B.18C.-18D.-$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知直線l過(guò)點(diǎn)M(-5,-5)且和圓C:x2+y2+4y-21=0相交于A,B;若OA⊥OB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若f(x)=$\frac{x-1}{x+1}$,則dy|x=1=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為an的一組正三角形AnBn-1Bn的底邊Bn-1Bn依次排列在x軸上(B0與坐標(biāo)原點(diǎn)重合).設(shè){an}是首項(xiàng)為a,公差為d的等差數(shù)列,若所有正三角形頂點(diǎn)An在第一象限,且均落在拋物線y2=2px(p>0)上,則$\frac{a}qbtftww$的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{2^{x+1}},x≤0\\{log_2}x,x>0\end{array}\right.$,若關(guān)于x的方程[f(x)]2-af(x)=0恰有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是(0,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案