【題目】在平面直角坐標(biāo)系中,圓,直線.

(1)以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求圓和直線的交點(diǎn)的極坐標(biāo);

(2)若點(diǎn)為圓和直線交點(diǎn)的中點(diǎn),且直線的參數(shù)方程為 (為參數(shù)),求 的值.

【答案】(1)和點(diǎn);(2), .

【解析】試題分析:(1)聯(lián)立直線和圓的極坐標(biāo)方程即可得到交點(diǎn)的極坐標(biāo);(2)兩個(gè)曲線的交點(diǎn)的直角坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為直線的普通方程為,將參數(shù)方程代入普通方程,即可得到結(jié)果.

解析:

(1)由題可知,圓的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,由

,可得,可得圓和直線的交點(diǎn)的極坐標(biāo)為和點(diǎn).

(2)由(1)知圓和直線的交點(diǎn)在平面直角坐標(biāo)系中的坐標(biāo)為,那么點(diǎn)的坐標(biāo)為,又點(diǎn)的坐標(biāo)為,所以直線的普通方程為,把 (為參數(shù))代入,可得,則,即, .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求 的值;

(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為的正方形與菱形所在平面互相垂直, 中點(diǎn).

(1)求證: 平面;

(2)若,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018海南高三階段性測(cè)試(二模)如圖,在直三棱柱中, ,點(diǎn)的中點(diǎn),點(diǎn)上一動(dòng)點(diǎn).

I)是否存在一點(diǎn),使得線段平面?若存在,指出點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.

II)若點(diǎn)的中點(diǎn)且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn)在傾斜角為的直線上,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的方程為.

(1)寫出的參數(shù)方程及的直角坐標(biāo)方程;

(2)設(shè)相交于兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD中, PA⊥平面ABCD,EBD的中點(diǎn),GPD的中點(diǎn),△DAB≌△DCB,EA=EB=AB=1, ,連接CE并延長(zhǎng)交ADF

Ⅰ)求證:ADCG

Ⅱ)求平面BCP與平面DCP的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】依據(jù)某地某條河流8月份的水文觀測(cè)點(diǎn)的歷史統(tǒng)計(jì)數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當(dāng)?shù)氐牡刭|(zhì)構(gòu)造,得到水位與災(zāi)害等級(jí)的頻率分布條形圖如圖(乙)所示.

試估計(jì)該河流在8月份水位的中位數(shù);

1)以此頻率作為概率,試估計(jì)該河流在8月份發(fā)生1級(jí)災(zāi)害的概率;

2)該河流域某企業(yè),在8月份,若沒受1、2級(jí)災(zāi)害影響,利潤(rùn)為500萬(wàn)元;若受1級(jí)災(zāi)害影響,則虧損100萬(wàn)元;若受2級(jí)災(zāi)害影響則虧損1000萬(wàn)元.

現(xiàn)此企業(yè)有如下三種應(yīng)對(duì)方案:

方案

防控等級(jí)

費(fèi)用(單位:萬(wàn)元)

方案一

無(wú)措施

0

方案二

防控1級(jí)災(zāi)害

40

方案三

防控2級(jí)災(zāi)害

100

試問(wèn),如僅從利潤(rùn)考慮,該企業(yè)應(yīng)選擇這三種方案中的哪種方案?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>,若滿足條件:存在,使上的值域?yàn)?/span>,則稱為“倍縮函數(shù)”.若函數(shù)為“倍縮函數(shù)”,則實(shí)數(shù)的取值范圍是

A. (﹣∞,ln2﹣1) B. (﹣∞,ln2﹣1]

C. (1﹣ln2,+∞) D. [1﹣ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)中國(guó)日?qǐng)?bào)網(wǎng)報(bào)道:2017年11月13日,TOP500發(fā)布的最新一期全球超級(jí)計(jì)算機(jī)500強(qiáng)榜單顯示,中國(guó)超算在前五名中占據(jù)兩席,其中超算全球第一“神威太湖之光”完全使用了國(guó)產(chǎn)品牌處理器。為了了解國(guó)產(chǎn)品牌處理器打開文件的速度,某調(diào)查公司對(duì)兩種國(guó)產(chǎn)品牌處理器進(jìn)行了12次測(cè)試,結(jié)果如下(數(shù)值越小,速度越快,單位是MIPS

測(cè)試1

測(cè)試2

測(cè)試3

測(cè)試4

測(cè)試5

測(cè)試6

測(cè)試7

測(cè)試8

測(cè)試9

測(cè)試10

測(cè)試11

測(cè)試12

品牌A

3

6

9

10

4

1

12

17

4

6

6

14

品牌B

2

8

5

4

2

5

8

15

5

12

10

21

設(shè)分別表示第次測(cè)試中品牌A和品牌B的測(cè)試結(jié)果,記

)求數(shù)據(jù)的眾數(shù);

)從滿足的測(cè)試中隨機(jī)抽取兩次,求品牌A的測(cè)試結(jié)果恰好有一次大于品牌B的測(cè)試結(jié)果的概率;

(Ⅲ)經(jīng)過(guò)了解,前6次測(cè)試是打開含有文字和表格的文件,后6次測(cè)試是打開含有文字和圖片的文件.請(qǐng)你依據(jù)表中數(shù)據(jù),運(yùn)用所學(xué)的統(tǒng)計(jì)知識(shí),對(duì)這兩種國(guó)產(chǎn)品牌處理器打開文件的速度進(jìn)行評(píng)價(jià).

查看答案和解析>>

同步練習(xí)冊(cè)答案