10.已知直線l1:ax+(a+2)y+2=0和l2:x+ay+1=0,若l1∥l2則a=-1.

分析 由a•a-(a+2)=0,解得a,檢驗此時兩條直線是否重合即可得出.

解答 解:由a•a-(a+2)=0,解得a=-1或2,
經(jīng)過檢驗a=2時兩條直線重合,舍去.
因此l1∥l2,則a=-1.
故答案為:-1.

點評 本題考查了平行線的充要條件、方程的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.當(dāng)x>2時,不等式x2-ax+9>0恒成立,則實數(shù)a的取值范圍為(-∞,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知一個圓錐的正視圖和側(cè)視圖都是邊長為1的正三角形,則它的俯視圖的面積是(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一個棱長為6的正四面體紙盒內(nèi)放一個正方體,若正方體可以在紙盒內(nèi)任意轉(zhuǎn)動,則正方體棱長的最大值為(  )
A.3B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,某小區(qū)內(nèi)有一矩形花壇,現(xiàn)將這一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求B點在AM上,D點在AN上,且對角線MN過C點,已知AB=3米,AD=2米.
(Ⅰ)設(shè)DN=x米,BM=y米,矩形AMPN的面積為z米2,試用x,y表示z;
(Ⅱ)當(dāng)DN的長度是多少時,矩形花壇AMPN的面積最。坎⑶蟪鲎钚≈担

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC中,AC=2,BC=4,AB=2$\sqrt{7}$,且D是BC的中點.
(1)求AD的長;
(2)如圖,點P是以∠ACD為圓心角的劣弧AD上任意一點,求PA2+PD2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,則輸出的a值為(  )
A.-3B.$\frac{1}{3}$C.$-\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.以(1,0),(-1,0)為焦點的橢圓與y=x-2有公共點,則該橢圓離心率的最大值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)動點P(x,y)(x≥0)到定點F(1,0)的距離比它到y(tǒng)軸的距離大1,記點P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)D(x0,2)是曲線C上一點,與兩坐標(biāo)軸都不平行的直線l1,l2過點D,且它們的傾斜角互補.若直線l1,l2與曲線C的另一交點分別是M,N,證明直線MN的斜率為定值.

查看答案和解析>>

同步練習(xí)冊答案