【題目】設(shè)集合A={x|0≤x≤2},B={y|1≤y≤2},在下圖中能表示從集合A到集合B的映射的是( )
A.
B.
C.
D.
【答案】D
【解析】解:在A中,當(dāng)0<x<1時,y<1,所以集合A到集合B不成映射,故A不成立;
在B中,1≤x≤2時,y<1,所以集合A到集合B不成映射,故B不成立;
在C中,0≤x≤1時,任取一個x值,在0≤y≤2內(nèi),有兩個y值與之相對應(yīng),所以構(gòu)不成映射,故C不成立;
在D中,0≤x≤1時,任取一個x值,在0≤y≤2內(nèi),總有唯一確定的一個y值與之相對應(yīng),故D成立.
故選:D
【考點(diǎn)精析】根據(jù)題目的已知條件,利用映射的相關(guān)定義的相關(guān)知識可以得到問題的答案,需要掌握對于映射f:A→B來說,則應(yīng)滿足:(1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;(3)不要求集合B中的每一個元素在集合A中都有原象;注意:映射是針對自然界中的所有事物而言的,而函數(shù)僅僅是針對數(shù)字來說的.所以函數(shù)是映射,而映射不一定的函數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為直角坐標(biāo)系的坐標(biāo)原點(diǎn),雙曲線 上有一點(diǎn)(),點(diǎn)在軸上的射影恰好是雙曲線的右焦點(diǎn),過點(diǎn)作雙曲線兩條漸近線的平行線,與兩條漸近線的交點(diǎn)分別為, ,若平行四邊形的面積為1,則雙曲線的標(biāo)準(zhǔn)方程是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知M={(x,y)|=3},N={(x,y)|ax+2y+a=0}且M∩N=,則a=( 。
A.﹣6或﹣2
B.﹣6
C.2或﹣6
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},從M到N有四種對應(yīng)如圖所示:
其中能表示為M到N的映射關(guān)系的有(請?zhí)顚懛蠗l件的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若橢圓過拋物線y2=8x的焦點(diǎn),且與雙曲線x2﹣y2=1有相同的焦點(diǎn),則該橢圓的方程為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓4x2+9y2=144內(nèi)有一點(diǎn)P(3,2)過點(diǎn)P的弦恰好以P為中點(diǎn),那么這弦所在直線的方程為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當(dāng)x∈(0,+∞)時,f(x)=2x .
(1)求f(log2 )的值;
(2)求f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:=1(a>b>0)的焦距為2 , 且該橢圓經(jīng)過點(diǎn)(,).
(Ⅰ)求橢圓E的方程;
(Ⅱ)經(jīng)過點(diǎn)P(﹣2,0)分別作斜率為k1 , k2的兩條直線,兩直線分別與橢圓E交于M,N兩點(diǎn),當(dāng)直線MN與y軸垂直時,求k1k2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間為了規(guī)定工時定額,需要確定加工某零件所花費(fèi)的時間,為此做了四次實(shí)驗(yàn),得到的數(shù)據(jù)如表:
零件的個數(shù)x(個) | 2 | 3 | 4 | 5 |
加工的時間y(小時) | 2.5 | 3 | 4 | 4.5 |
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程y= x+ ,并在坐標(biāo)系中畫出回歸直線;
(3)試預(yù)測加工6個零件需要多少時間?
(注: = , = ﹣ )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com