如圖,正三棱柱中,點(diǎn)是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求證:平面.
(Ⅰ)詳見解析;(Ⅱ)詳見解析.
解析試題分析:(Ⅰ)欲證線面垂直,先考察線線垂直,易知和,所以平面;(Ⅱ)線面平行,先構(gòu)造線線平行,根據(jù)中點(diǎn),易想到構(gòu)造三角形中位線,連接,設(shè),則可達(dá)到目的.
試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/80/b/1l68d4.png" style="vertical-align:middle;" />是正三角形,而點(diǎn)是的中點(diǎn),所以……………3分
又三棱柱是正三棱柱,所以面,面,所以,,所以平面;……………………………… 7分
(Ⅱ)連接,設(shè),則為的中點(diǎn),連接,由是的中點(diǎn),
得………11分
又面,且面,所以平面.………14分
考點(diǎn):直線與平面平行的判定、直線與平面垂直的判定.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,平面,四邊形為正方形,且,分別是線段的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐與四棱錐的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,平面平面,,是等邊三角形,已知.
(1)設(shè)是上的一點(diǎn),證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn).
(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在三棱拄中,側(cè)面,已知,,.
(Ⅰ)求證:平面;
(Ⅱ)試在棱(不包含端點(diǎn))上確定一點(diǎn)的位置,使得;
(Ⅲ)在(Ⅱ)的條件下,求和平面所成角正弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點(diǎn),且MN=PQ.
(1)求證:四邊形為平行四邊形;
(2)試在直線AC上找一點(diǎn)F,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=AB.
(Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱(即側(cè)棱與底面垂直的三棱柱)中,,為的中點(diǎn)
(I)求證:平面平面;
(II)求到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com