【題目】20195月,重慶市育才中學(xué)開展了“最美教室”文化布置評(píng)比活動(dòng),工作人員隨機(jī)抽取了16間教室進(jìn)行量化評(píng)估,其中評(píng)分不低于9分的教室評(píng)為優(yōu)秀,以下表格記錄了它們的評(píng)分情況:

分?jǐn)?shù)段

教室間數(shù)

1

3

8

4

(1)現(xiàn)從16間教室隨機(jī)抽取3個(gè),求至多有1個(gè)優(yōu)秀的概率;

(2)以這16間教室評(píng)分?jǐn)?shù)據(jù)估計(jì)全校教室的布置情況,若從全校所有教室中任選3個(gè),記表示抽到優(yōu)秀的教室個(gè)數(shù),求的分布列及數(shù)學(xué)期望.

【答案】1;(2)見解析

【解析】

1)由表格可知有4個(gè)教室優(yōu)秀,16間教室隨機(jī)抽取3個(gè),至多有1個(gè)優(yōu)秀的情況分別是沒有優(yōu)秀的和只有一個(gè)優(yōu)秀的,由此求解即可;

(2)由樣本估計(jì)總體可知優(yōu)秀的概率為,則,進(jìn)而根據(jù)二項(xiàng)分布求解即可

1)設(shè)表示所抽取的3間教室中有個(gè)教室優(yōu)秀,設(shè)抽取3間教室中至多有1個(gè)優(yōu)秀為事件,

2)由表格數(shù)據(jù)可知,16間教室中任選1個(gè)優(yōu)秀的概率為,

由題可知的可能取值為0,1,2,3,

,

,

,

,

所以的分布列為

0

1

2

3

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4,坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)),在以O為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為

)求直線的普通方程與曲線C的直角坐標(biāo)方程;

)若直線軸的交點(diǎn)為P,直線與曲線C的交點(diǎn)為A,B,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校健康社團(tuán)為調(diào)查本校大學(xué)生每周運(yùn)動(dòng)的時(shí)長,隨機(jī)選取了80名學(xué)生,調(diào)查他們每周運(yùn)動(dòng)的總時(shí)長(單位:小時(shí)),按照6組進(jìn)行統(tǒng)計(jì),得到男生、女生每周運(yùn)動(dòng)的時(shí)長的統(tǒng)計(jì)如下(表1、2),規(guī)定每周運(yùn)動(dòng)15小時(shí)以上(含15小時(shí))的稱為“運(yùn)動(dòng)合格者”,其中每周運(yùn)動(dòng)25小時(shí)以上(含25小時(shí))的稱為“運(yùn)動(dòng)達(dá)人”.

1:男生

時(shí)長

人數(shù)

2

8

16

8

4

2

2:女生

時(shí)長

人數(shù)

0

4

12

12

8

4

1)從每周運(yùn)動(dòng)時(shí)長不小于20小時(shí)的男生中隨機(jī)選取2人,求選到“運(yùn)動(dòng)達(dá)人”的概率;

2)根據(jù)題目條件,完成下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為本校大學(xué)生是否為“運(yùn)動(dòng)合格者”與性別有關(guān).

每周運(yùn)動(dòng)的時(shí)長小于15小時(shí)

每周運(yùn)動(dòng)的時(shí)長不小于15小時(shí)

總計(jì)

男生

女生

總計(jì)

參考公式:,其中.

參考數(shù)據(jù):

0.40

0.25

0.10

0.010

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的偶函數(shù)滿足,且,當(dāng)時(shí),.已知方程在區(qū)間上所有的實(shí)數(shù)根之和為.將函數(shù)的圖象向右平移個(gè)單位長度,得到函數(shù)的圖象,則____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓()的左、右焦點(diǎn)分別是,點(diǎn)的上頂點(diǎn),點(diǎn)上,,且.

1)求的方程;

2)已知過原點(diǎn)的直線與橢圓交于,兩點(diǎn),垂直于的直線且與橢圓交于,兩點(diǎn),若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某芯片公司對(duì)今年新開發(fā)的一批5G手機(jī)芯片進(jìn)行測評(píng),該公司隨機(jī)調(diào)查了100顆芯片,并將所得統(tǒng)計(jì)數(shù)據(jù)分為五個(gè)小組(所調(diào)查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中

1)求這100顆芯片評(píng)測分?jǐn)?shù)的平均數(shù)(同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替).

2)芯片公司另選100顆芯片交付給某手機(jī)公司進(jìn)行測試,該手機(jī)公司將每顆芯片分別裝在3個(gè)工程手機(jī)中進(jìn)行初測。若3個(gè)工程手機(jī)的評(píng)分都達(dá)到11萬分,則認(rèn)定該芯片合格;若3個(gè)工程手機(jī)中只要有2個(gè)評(píng)分沒達(dá)到11萬分,則認(rèn)定該芯片不合格;若3個(gè)工程手機(jī)中僅1個(gè)評(píng)分沒有達(dá)到11萬分,則將該芯片再分別置于另外2個(gè)工程手機(jī)中進(jìn)行二測,二測時(shí),2個(gè)工程手機(jī)的評(píng)分都達(dá)到11萬分,則認(rèn)定該芯片合格;2個(gè)工程手機(jī)中只要有1個(gè)評(píng)分沒達(dá)到11萬分,手機(jī)公司將認(rèn)定該芯片不合格.已知每顆芯片在各次置于工程手機(jī)中的得分相互獨(dú)立,并且芯片公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)與手機(jī)公司對(duì)芯片的評(píng)分方法及標(biāo)準(zhǔn)都一致(以頻率作為概率).每顆芯片置于一個(gè)工程手機(jī)中的測試費(fèi)用均為300元,每顆芯片若被認(rèn)定為合格或不合格,將不再進(jìn)行后續(xù)測試,現(xiàn)手機(jī)公司測試部門預(yù)算的測試經(jīng)費(fèi)為10萬元,試問預(yù)算經(jīng)費(fèi)是否足夠測試完這100顆芯片?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實(shí)數(shù)a的取值范圍為(  )

A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠加工某種零件需要經(jīng)過,,三道工序,且每道工序的加工都相互獨(dú)立,三道工序加工合格的概率分別為,,.三道工序都合格的零件為一級(jí)品;恰有兩道工序合格的零件為二級(jí)品;其它均為廢品,且加工一個(gè)零件為二級(jí)品的概率為.

1)求;

2)若該零件的一級(jí)品每個(gè)可獲利200元,二級(jí)品每個(gè)可獲利100元,每個(gè)廢品將使工廠損失50元,設(shè)一個(gè)零件經(jīng)過三道工序加工后最終獲利為元,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直四棱柱的底面是邊長為2的菱形,,.分別為的中點(diǎn).平面與棱所在直線交于點(diǎn).

1)求證:平面平面;

2)求直線與平面所成角的正弦值;

3)判斷點(diǎn)是否與點(diǎn)重合.

查看答案和解析>>

同步練習(xí)冊(cè)答案