【題目】已知函數(shù)f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實數(shù)a的取值范圍為(  )

A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)

【答案】B

【解析】,在上恒成立, 上是增函數(shù),又是奇函數(shù),∴不等式可化為,結(jié)合函數(shù)的定義域可知, 須滿足,解得,故選B.

【方法點晴】本題主要考查函數(shù)的定義域、 單調(diào)性、奇偶性性,利用單調(diào)性解不等式以及導(dǎo)數(shù)在函數(shù)中的應(yīng)用,屬于難題.根據(jù)函數(shù)的單調(diào)性解不等式應(yīng)注意以下三點:(1)一定注意抽象函數(shù)的定義域(這一點是同學(xué)們?nèi)菀资韬龅牡胤剑荒艿粢暂p心);(2)注意應(yīng)用函數(shù)的奇偶性(往往需要先證明是奇函數(shù)還是偶函數(shù));(3)化成 后再利用單調(diào)性和定義域列不等式組

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,書中有一問題:今有方物一束,外周一匝有三十二枚,問積幾何?,該著作中提出了一種解決此問題的方法:重置二位,左位減八,余加右位,至盡虛減一,即得.”通過對該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)8的整數(shù)倍時,均可采用此方法求解,如圖是解決這類問題的程序框圖,若輸入,則輸出的結(jié)果為(

A.80B.47C.79D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中真命題的個數(shù)是  

中,的三內(nèi)角A,BC成等差數(shù)列的充要條件;

若“,則”的逆命題為真命題;

充分不必要條件;

的充要條件.

A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20195月,重慶市育才中學(xué)開展了“最美教室”文化布置評比活動,工作人員隨機抽取了16間教室進行量化評估,其中評分不低于9分的教室評為優(yōu)秀,以下表格記錄了它們的評分情況:

分數(shù)段

教室間數(shù)

1

3

8

4

(1)現(xiàn)從16間教室隨機抽取3個,求至多有1個優(yōu)秀的概率;

(2)以這16間教室評分數(shù)據(jù)估計全校教室的布置情況,若從全校所有教室中任選3個,記表示抽到優(yōu)秀的教室個數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬、“馬主曰:“我馬食半牛,”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟、羊主人說:“我羊所吃的禾苗只有馬的一半,”馬主人說:“我馬所吃的禾苗只有牛的一半,“打算按此比例償還,他們各應(yīng)償還多少?該問題中,1斗為10升,則馬主人應(yīng)償還( )升粟?

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點為,直線與圓交于兩點.

1)若直線過點,且,求被橢圓所截得的弦的長度;

2)若已知點在橢圓上,動點滿足,請判斷點與圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右頂點分別為C、D,且過點,P是橢圓上異于CD的任意一點,直線PC,PD的斜率之積為

1)求橢圓的方程;

2O為坐標原點,設(shè)直線CP交定直線x = m于點M,m為何值時,為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù),.

1)討論函數(shù)的單調(diào)性;

2)當時,求使得恒成立的最小整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列對這類高階等差數(shù)列的研究,在楊輝之后一般稱為垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項分別為1,48,14,23,36,54,則該數(shù)列的第19項為( )(注:

A.1624B.1024C.1198D.1560

查看答案和解析>>

同步練習(xí)冊答案