【題目】下列四個(gè)命題中,其中錯(cuò)誤的個(gè)數(shù)是()

①經(jīng)過(guò)球面上任意兩點(diǎn),可以作且只可以作一個(gè)大圓;

②經(jīng)過(guò)球直徑的三等分點(diǎn),作垂直于該直徑的兩個(gè)平面,則這兩個(gè)平面把球面分成三部分的面積相等;

③球的面積是它大圓面積的四倍;

④球面上兩點(diǎn)的球面距離,是這兩點(diǎn)所在截面圓上,以這兩點(diǎn)為端點(diǎn)的劣弧的長(zhǎng).

A. 0B. 1C. 2D. 3

【答案】C

【解析】

結(jié)合球的有關(guān)概念:如球的大圓、球面積公式、球面距離等即可解決問(wèn)題,對(duì)于球的大圓、球面積公式、球面距離等的含義的理解,是解決此題的關(guān)鍵.

對(duì)于①,若兩點(diǎn)是球的一條直徑的端點(diǎn),則可以作無(wú)數(shù)個(gè)球的大圓,故①錯(cuò);
對(duì)于②三部分的面積都是,故②正確

對(duì)于③,球面積=,是它大圓面積的四倍, 故③正確;
對(duì)于④,球面上兩點(diǎn)的球面距離,是這兩點(diǎn)所在大圓上以這兩點(diǎn)為端點(diǎn)的劣弧的長(zhǎng),故④錯(cuò).
所以①④錯(cuò)誤.
所以C選項(xiàng)是正確的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)a=1,b=2,求函數(shù)在點(diǎn)(2,f(2))處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若a<b,任取存在實(shí)數(shù)m使恒成立m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,經(jīng)過(guò)橢圓的右焦點(diǎn)的弦中最短弦長(zhǎng)為2.

(1)求橢圓的的方程;

(2)已知橢圓的左頂點(diǎn)為為坐標(biāo)原點(diǎn),以為直徑的圓上是否存在一條切線交橢圓于不同的兩點(diǎn),且直線的斜率的乘積為?若存在,求切線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年開(kāi)始,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生450人)中,根據(jù)性別分層,采用分層抽樣的方法從中抽取100名學(xué)生進(jìn)行調(diào)查.

(1)學(xué)校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)抽取到的100名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),如表是根據(jù)調(diào)查結(jié)果得到的2×2列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;

(2)在抽取到的女生中按(1)中的選課情況進(jìn)行分層抽樣,從中抽出9名女生,再?gòu)倪@9名女生中隨機(jī)抽取4人,設(shè)這4人中選擇“地理”的人數(shù)為,求的分布列及數(shù)學(xué)期望.

選擇“物理”

選擇“地理”

總計(jì)

男生

10

女生

25

總計(jì)

附參考公式及數(shù)據(jù):,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,棱長(zhǎng)為的正方形中,點(diǎn),分別是邊,上的點(diǎn),且,將,沿,折起,使得,兩點(diǎn)重合于點(diǎn)上,設(shè)交于點(diǎn),過(guò)點(diǎn)點(diǎn).

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是矩形,面底面,且是邊長(zhǎng)為的等邊三角形, 上,且.

(1)求證: 的中點(diǎn);

(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,P為橢圓C上的動(dòng)點(diǎn),且滿足,,面積的最大值為4.

(1)求動(dòng)點(diǎn)Q的軌跡E的方程和橢圓C的方程.

(2)若點(diǎn)P不在x軸上,過(guò)點(diǎn)F2OP的平行線交曲線CM、N兩個(gè)不同的點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)四位數(shù)的各位數(shù)字相加和為,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“”.試問(wèn)用數(shù)字組成的無(wú)重復(fù)數(shù)字且大于的“完美四位數(shù)”有( )個(gè)

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某學(xué)校高三年級(jí)800名學(xué)生中隨機(jī)抽取50名測(cè)量身高,據(jù)測(cè)量被抽取的學(xué)生的身高全部介于155cm195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[155160);第二組[160,165);…第八組[190,195],圖是按上述分組方法得到的條形圖.

(1)根據(jù)已知條件填寫將表格填寫完整;

組別

1

2

3

4

5

6

7

8

樣本

2

4

10

10

15

4

(2)估計(jì)這所學(xué)校高三年級(jí)800名學(xué)生中身高在180cm以上(含180cm)的人數(shù);

(3)在樣本中,若第二組有1人為男生,其余為女生,第七組有1人為女生,其余為男生,在第二組和第七組中各選一名同學(xué)組成實(shí)驗(yàn)小組,問(wèn):實(shí)驗(yàn)小組中恰為一男一女的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案