2.若sinα>0,cosα<0,則角α在第二象限.

分析 利用三角函數(shù)在各個象限的三角函數(shù)的符號,判斷α的象限即可.

解答 解:sinα>0,說明α在一、二象限,cosα<0,說明α在二、三象限,
所以α在第二象限.
故答案為:二.

點評 本題是基礎(chǔ)題,考查三角函數(shù)在各個象限的符號的判斷,送分題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合A={x|(x+1)(4-x)>0},B={x|0<x<9},則A∩B等于(  )
A.(0,4)B.(4,9)C.(-1,4)D.(-1,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow m=(\sqrt{3}sin\frac{x}{4},1),\overrightarrow n=(cos\frac{x}{4},cos_{\;}^2\frac{x}{4}).記f(x)=\overrightarrow m•\overrightarrow n$.
(1)若f(α)=$\frac{3}{2},求cos(\frac{2π}{3}-α)$的值;
(2)在△ABC中,角A、B、C的對邊分別是a、b、c,且滿足(2a-c)cos B=bcos C,若f(A)=$\frac{{1+\sqrt{3}}}{2}$,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的長軸長為4,焦距為$2\sqrt{3}$,以A為圓心的圓(x-2)2+y2=r2(r>0)與橢圓相交于B、C兩點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求$\overrightarrow{AB}•\overrightarrow{AC}$的取值范圍;
(Ⅲ)設(shè)P是橢圓C長異于B、C的任一點,直線PB、PC與x軸分別交于M、N,
求S△POM•S△PON的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={x|(x-1)=0},那么( 。
A.0∈MB.1∉MC.-1∈MD.0∉M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列各式的值.
(Ⅰ)9${\;}^{\frac{1}{2}}$+($\frac{1}{2}$)-1-lg100;
(Ⅱ)(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p:若x>10,則x>1,那么p的逆否命題為( 。
A.若x>1,則x>10B.若x>10,則x≤1C.若x≤10,則x≤1D.若x≤1,則x≤10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某人欲投資A,B兩支股票時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損,根據(jù)預(yù)測,A,B兩支股票可能的最大盈利率分別為40%和80%,可能的最大虧損率分別為10%和30%.若投資金額不超過15萬元.根據(jù)投資意向,A股的投資額不大于B股投資額的3倍,且確?赡艿馁Y金虧損不超過2.7萬元,設(shè)該人分別用x萬元,y萬元投資A,B兩支股票.
(Ⅰ)用x,y列出滿足投資條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問該人對A,B兩支股票各投資多少萬元,才能使可能的盈利最大?并求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)P為雙曲線$\frac{{x}^{2}}{36}-\frac{{y}^{2}}{25}$=1右支上的任意一點,O為坐標(biāo)原點,過點P作雙曲線兩漸近線的平行線,分別與兩漸近線交于A,B兩點,則平行四邊形PAOB的面積為15.

查看答案和解析>>

同步練習(xí)冊答案