18.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上為增函數(shù),且f(-1)=$\frac{1}{2}$,若實(shí)數(shù)a滿足f(loga3)+f(${log_a}\frac{1}{3}$)≤1,則實(shí)數(shù)a的取值范圍為( 。
A.0<a≤$\frac{1}{3}$B.a≥3,或0<a<$\frac{1}{4}$C.a≥3,或0<a≤$\frac{1}{3}$D.a≥3

分析 利用題意首先確定函數(shù)在全體實(shí)數(shù)域上的單調(diào)性,然后結(jié)合函數(shù)的單調(diào)性和奇偶性得到對數(shù)不等式,求解對數(shù)不等式即可求得最終結(jié)果.

解答 解:由偶函數(shù)f(x)在區(qū)間[0,+∞)上為增函數(shù),且 $f(-1)=\frac{1}{2}$可知:
函數(shù)f(x)在區(qū)間(-∞,0]上為減函數(shù),且$f(1)=\frac{1}{2}$,
整理求解題中所給的不等式:
f(loga3)+f(loga$\frac{1}{3}$ )=f(loga3)+f(-loga3)=2f(loga3)?1,
∴$f({log}_{a}3)≤\frac{1}{2}=f(1)$,
結(jié)合函數(shù)的單調(diào)性和奇偶性有:|loga3|≤1,
解得a≥3,或0<a≤$\frac{1}{3}$.
故選:C.

點(diǎn)評 本題考查函數(shù)的單調(diào)性,函數(shù)的奇偶性,對數(shù)不等式的解法等,重點(diǎn)考查學(xué)生對基礎(chǔ)概念的理解和計(jì)算能力,屬于中等題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬元)有如下的統(tǒng)計(jì)資料:
使用年限x23456
維修費(fèi)用y2.23.85.56.57.0
若由資料知,y與x呈線性相關(guān)關(guān)系,
(1)試求線性回歸方程$\left.\begin{array}{l}{∧}\\{y}\end{array}\right.$=$\left.\begin{array}{l}{∧}\\\end{array}\right.$x+$\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$.( 提示:$\left.\begin{array}{l}{∧}\\\end{array}\right.$=$\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i-1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$; $\left.\begin{array}{l}{∧}\\{a}\end{array}\right.$=$\overline{y}$-$\left.\begin{array}{l}{∧}\\\end{array}\right.$$\overline{x}$)
(2)估計(jì)使用年限為10年時,維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.f(x)=$\sqrt{3}sin(2x-\frac{π}{12})-cos(2x-\frac{π}{12})$在x∈$[0,\frac{π}{2}]$的對稱軸為(  )
A.$x=\frac{π}{8}$B.$x=\frac{π}{4}$C.$x=\frac{π}{3}$D.$x=\frac{3π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知隨機(jī)變量X服從二項(xiàng)分布,X~B(5,$\frac{2}{3}$),則P(X=2)等于$\frac{40}{243}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=cosx(sinx+cosx)-$\frac{1}{2}$.
(1)若0<α<$\frac{π}{2}$,且sinα=$\frac{\sqrt{2}}{2}$,求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=|x-3|-5,g(x)=|x+2|-2.
(1)求不等式f(x)≤2的解集;
(2)若不等式f(x)-g(x)≥m-3有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=|x+a|-|x-1|.
(Ⅰ)當(dāng)a=-2時,求不等式$f(x)≥\frac{1}{2}$的解集;
(Ⅱ)若f(x)≥2有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知角α的終邊是射線y=-x(x≥0),則sinα的值等于(  )
A.±$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.±$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步練習(xí)冊答案