分析 令t=-x2-2x+3>0,求得函數(shù)的定義域,且y=log${\;}_{\frac{1}{2}}$t,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間,再利用二次函數(shù)的性值可得結(jié)論.
解答 解:令t=-x2-2x+3>0,求得-3<x<1,故函數(shù)的定義域為(-3,1),y=log${\;}_{\frac{1}{2}}$t,
本題即求函數(shù)t在定義域內(nèi)的減區(qū)間.
再利用二次函數(shù)的性值可得t在定義域內(nèi)的減區(qū)間為[-1,1),
故答案為:[-1,1).
點評 本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)、對數(shù)函數(shù)的性質(zhì),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{n(n-1)}{2}$ | B. | $\frac{n(n+1)}{2}$ | C. | $\frac{n(n-1)}{4}$ | D. | $\frac{n(n+1)}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行 | B. | 相交但不垂直 | C. | 垂直 | D. | 相交于點(2,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=|x|,$g(x)=\sqrt{x^2}$ | B. | f(x)=2x,g(x)=2(x+1) | ||
C. | $f(x)=\sqrt{{{(-x)}^2}}$,$g(x)={(\sqrt{-x})^2}$ | D. | $f(x)=\frac{{{x^2}+x}}{x+1}$,g(x)=x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com