已知函數(shù)f(x)=lnx-ax在區(qū)間[1,3]上有兩個不同的零點,則實數(shù)a的取值范圍是
 
考點:根的存在性及根的個數(shù)判斷
專題:計算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)f(x)=lnx-ax在區(qū)間[1,3]上有兩個不同的零點可化為y=lnx與y=ax在[1,3]上有兩個不同的交點,作圖求解.
解答: 解:函數(shù)f(x)=lnx-ax在區(qū)間[1,3]上有兩個不同的零點可化為
y=lnx與y=ax在[1,3]上有兩個不同的交點,
作函數(shù)y=lnx與y=ax在[1,3]上的圖象如下,

當(dāng)直線與y=lnx相切時,
lnx
x
=
1
x

解得,x=e;
故直線與y=lnx相切時,切線的斜率a=
1
e

當(dāng)過點(3,ln3)時,a=
ln3
3
;
故實數(shù)a的取值范圍是[
ln3
3
,
1
e
);
故答案為:[
ln3
3
1
e
).
點評:本題考查了數(shù)形結(jié)合的應(yīng)用及函數(shù)的零點與函數(shù)的圖象的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
x-3
是( 。
A、(3,+∞)上的增函數(shù)
B、[3,+∞)上的增函數(shù)
C、(3,+∞)上的減函數(shù)
D、[3,+∞)上的增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l,直線b,平面α,下列說法正確的是( 。
A、若l∥b,b?α,那么l平行α內(nèi)的無數(shù)條直線
B、若l?α,則l∥α
C、若l⊥b,b?α,則l⊥α
D、l平行于α內(nèi)的無數(shù)直線,則l∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin2x的圖象的一條對稱軸的方程是(  )
A、x=-
π
2
B、x=-
π
4
C、x=
π
8
D、x=
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項均為正數(shù),觀察如圖程序框圖,當(dāng)k=2時,有S=8,當(dāng)k=3時,有S=15.
(1)試求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足an=log2bn,抽去數(shù)列{bn}中的第1項,第4項,第7項,…,第3n-2項,…,余下的項順序不變,組成一個新數(shù)列{cn},求{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式是an=-2n+10,其前n項的和是Sn,則Sn最大時n的取值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知直線l在x、y軸上的截距的絕對值相等,且到點(1,2)的距離為
2
,求直線l的方程;
(2)求經(jīng)過直線l1:x+y-5=0,l2:x-y-3=0的交點且平行于直線2x+y-3=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,若a4=5,a8=6,則a2a10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=
2
,則異面直線A1C與B1C1所成的角為(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

同步練習(xí)冊答案