分析 (1)根據(jù)向量的平行和余弦定理即可求出B;
(2)根據(jù)同角的三角函數(shù)的關(guān)系以及兩角和差的正弦公式和正弦定理即可求出.
解答 解:(1)因?yàn)?\overrightarrow{m}$∥$\overrightarrow{n}$,所以a2+c2-b2=ac,(2分)
因?yàn)閏osB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,(4分)
因?yàn)锽∈(0,π)(5分)
所以B=$\frac{π}{3}$.(6分)
(2)因?yàn)锳+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),(7分)
cos(A+$\frac{π}{6}$)=$\frac{3\sqrt{39}}{26}$,所以sin(A+$\frac{π}{6}$)=$\frac{5\sqrt{13}}{26}$,(9分)
所以sinA=sin[(A+$\frac{π}{6}$)-$\frac{π}{6}$]=$\frac{\sqrt{39}}{26}$,(11分)
在△ABC中,由正弦定理可得:$\frac{a}{sinA}$=$\frac{sinB}$,(13分)
解得a=1.(14分)
點(diǎn)評 本題考查三角函數(shù)的恒等變形,本題解題的關(guān)鍵是利用向量之間的關(guān)系寫出三角函數(shù)之間的關(guān)系,注意正弦定理,余弦定理的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | π | C. | $\frac{3π}{2}$ | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(sin$\frac{1}{2}$)<f(cos$\frac{1}{2}$) | B. | f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$) | C. | f(sin1)<f(cos1) | D. | f(sin$\frac{π}{2}$)>f(cos$\frac{π}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com