分析 (Ⅰ)由已知利用平面向量數(shù)量積的運算化簡可得函數(shù)解析式f(x)=sin(2ωx-$\frac{π}{6}$),由題意可知其周期為π,利用周期公式可求ω,即可得解函數(shù)解析式,由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
即可解得f(x)的單調(diào)遞增區(qū)間.
(Ⅱ)由f(C)=1,得$sin(2C-\frac{π}{6})=1$,結(jié)合范圍0<C<π,可得-$\frac{π}{6}$<2C-$\frac{π}{6}$<$\frac{11π}{6}$,解得C=$\frac{π}{3}$,結(jié)合已知由余弦定理得ab的值,由面積公式即可計算得解.
解答 (本小題滿分12分)
解:(Ⅰ)∵$\overrightarrow{a}$=($\sqrt{3}$sinωx,sinωx),$\overrightarrow$=(cosωx,sinωx),
∴$f(x)=\overrightarrow a•\overrightarrow b-\frac{1}{2}=\sqrt{3}sinωxcosωx+{sin^2}ωx-\frac{1}{2}=sin(2ωx-\frac{π}{6})$,…(3分)
由題意可知其周期為π,故ω=1,則f(x)=sin(2x-$\frac{π}{6}$),…(4分)
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,
∴f(x)的單調(diào)遞增區(qū)間為:[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z,…(6分)
(Ⅱ)由f(C)=1,得$sin(2C-\frac{π}{6})=1$,
∵0<C<π,∴-$\frac{π}{6}$<2C-$\frac{π}{6}$<$\frac{11π}{6}$,
∴2C-$\frac{π}{6}$=$\frac{π}{2}$,解得C=$\frac{π}{3}$. …(8分)
又∵a+b=3,$c=\sqrt{3}$,由余弦定理得c2=a2+b2-2abcos$\frac{π}{3}$,
∴(a+b)2-3ab=3,即ab=2,
由面積公式得三角形面積為$\frac{1}{2}absinC=\frac{{\sqrt{3}}}{2}$.…(12分)
點評 本題主要考查了平面向量數(shù)量積的運算,三角函數(shù)恒等變換的應(yīng)用,周期公式,正弦函數(shù)的圖象和性質(zhì),余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=ln$\sqrt{1+{x}^{2}}$ | B. | f(x)=cos2(x-$\frac{π}{4}$) | C. | f(x)=$\frac{(x-1)^{2}}{1+{x}^{2}}$ | D. | f(x)=$\frac{{2}^{x}}{{2}^{x}-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 189 | B. | 72 | C. | 60 | D. | 33 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=(-1)n-1+1 | B. | an=$\left\{\begin{array}{l}{2,n為奇數(shù)}\\{0,n為偶數(shù)}\end{array}\right.$ | ||
C. | an=2sin$\frac{nπ}{2}$ | D. | an=cos(n-1)π+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,4} | B. | {-2,-1,0} | C. | {-1,0,1} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com