【題目】如圖,正方形所在平面與等腰梯形所在平面互相垂直,已知,.

(1)求證:平面平面;

(2)求平面與平面所成銳二面角的余弦值.

【答案】(1)見解析(2)

【解析】

(1)分別證明BD垂直DEAD,結(jié)合直線與平面垂直判定,即可.(2)建立坐標系,分別計算兩個平面的法向量,結(jié)合向量數(shù)量積公式,即可.

證明:(1)因為平面平面,平面平面,

,所以平面,

所以.

中,,

由余弦定理可得,所以,

所以,即,

又因為平面,平面,

所以平面,

又因為平面,所以平面平面.

(2)因為四邊形是等腰梯形,,

又由(1)知,所以,所以.

為坐標原點,分別以,,所在直線作為軸,軸,軸建立如圖所示的坐標系,

,則,可得,,

,可得,

由此可得,,,

設平面的法向量為,則

可得,

,則,,所以,

由(1)知,,,所以是平面的一個法向量.

.

所以所求銳二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了迎接旅游旺季的到來,遼陽湯河風景區(qū)內(nèi)供游客住宿的某賓館,工作人員發(fā)現(xiàn)為游客準備的食物有些月份剩余不少,浪費很嚴重,為了控制經(jīng)營成本,減少浪費,就想適時調(diào)整投入.為此他們統(tǒng)計每個月入住的游客人數(shù),現(xiàn)每年各個月份來賓館入住的游客人數(shù)會呈現(xiàn)周期性的變化,并且有以下規(guī)律:

①每年相同的月份,入住賓館的游客人數(shù)基本相同;

②入住賓館的游客人數(shù)在2月份最少,在8月份最多,相差約400人;

2月份入住賓館的游客約為100人,隨后逐月增加直到8月份達到最多.

1)若一年中入住賓館的游客人數(shù)與月份之間的關系為,.試求出函數(shù)的解析式;

2)請問哪幾個月份要準備不少于400份的食物?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)討論極值點的個數(shù);

(2)若,不等式恒成立,當為正數(shù)時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線.

1)求證:對直線與圓總有兩個不同的交點;

2)是否存在實數(shù),使得圓上有四個點到直線的距離為?若存在,求出的范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,是棱的中點,是側(cè)面內(nèi)的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的序號為__________

①點的軌跡是一條線段.②是異面直線.

不可能平行.④三棱錐的體積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《周脾算經(jīng)》有記載:一年有二十四個節(jié)氣,每個節(jié)氣晷(gui)長損益相同,晷是按照日影測定時刻的儀器,晷長即所測定的影子的長度,二十四節(jié)氣及晷長變化如圖所示,相鄰兩個節(jié)氣晷長變化量相同,周而復始,若冬至晷長最長是一丈三尺五寸,夏至晷長最短是一尺五寸,(一丈等于10尺,一尺等于10寸),則秋分節(jié)氣的晷長是(

A.七尺五寸B.二尺五寸C.五尺五寸D.四尺五寸

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,,數(shù)列的前項和為,且有.

1)求的通項公式;

2)若,,求使成立的的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,圓,直線l過點

若直線l被圓所截得的弦長為,求直線l的方程;

若圓P是以為直徑的圓,求圓P與圓的公共弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為大力提倡厲行節(jié)約,反對浪費,某市通過隨機調(diào)查100名性別不同的居民是否做到光盤行動,得到如下列聯(lián)表:

做不到光盤行動

做到光盤行動

45

10

30

15

經(jīng)計算 附表:

參照附表,得到的正確結(jié)論是(

A.在犯錯誤的概率不超過的前提下,認為該市居民能否做到光盤行動與性別有關

B.在犯錯誤的概率不超過的前提下,認為該市居民能否做到光盤行動與性別無關

C.以上的把握認為該市居民能否做到光盤行動與性別有關

D.以上的把握認為該市居民能否做到光盤行動與性別無關

查看答案和解析>>

同步練習冊答案