【題目】《周脾算經(jīng)》有記載:一年有二十四個節(jié)氣,每個節(jié)氣晷(gui)長損益相同,晷是按照日影測定時刻的儀器,晷長即所測定的影子的長度,二十四節(jié)氣及晷長變化如圖所示,相鄰兩個節(jié)氣晷長變化量相同,周而復始,若冬至晷長最長是一丈三尺五寸,夏至晷長最短是一尺五寸,(一丈等于10尺,一尺等于10寸),則秋分節(jié)氣的晷長是(

A.七尺五寸B.二尺五寸C.五尺五寸D.四尺五寸

【答案】A

【解析】

由題意從夏至到秋分到冬至的過程中晷長為等差數(shù)列,設(shè)為,則夏至晷長為首項,冬至晷長為第13項,利用等差數(shù)列的通項公式即可得出.

由題意從夏至到秋分到冬至的過程中晷長為等差數(shù)列,設(shè)為.

,,則公差.

秋分晷長為.

所以秋分節(jié)氣的晷長是七尺五寸

故選:A

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,位于A處的信息中心獲悉:在其正東方向相距40海里的B處有一艘漁船遇險,在原地等待營救.信息中心立即把消息告知在其南偏西30°,相距20海里的C處的乙船,現(xiàn)乙船朝北偏東的方向即沿直線CB前往B處救援,則等于 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,一個正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實心裝飾塊,容器內(nèi)盛有升水時,水面恰好經(jīng)過正四棱錐的頂點P.如果將容器倒置,水面也恰好過點(圖2).有下列四個命題:

A.正四棱錐的高等于正四棱柱高的一半

B.將容器側(cè)面水平放置時,水面也恰好過點

C.任意擺放該容器,當水面靜止時,水面都恰好經(jīng)過點

D.若往容器內(nèi)再注入升水,則容器恰好能裝滿

其中真命題的代號是: (寫出所有真命題的代號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以軸的非負半軸為極軸,原點為極點建立極坐標系,兩種坐標系中取相同的長度單位,若直線 分別與曲線相交于、兩點(,兩點異于坐標原點).

(1)求曲線的普通方程與、兩點的極坐標;

(2)求直線的極坐標方程及的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形所在平面與等腰梯形所在平面互相垂直,已知,,.

(1)求證:平面平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的相鄰兩對稱軸間的距離為,若將的圖像先向左平移個單位,再向下平移個單位,所得的函數(shù)為奇函數(shù).

1)求的解析式;

2)若關(guān)于的方程在區(qū)間上有兩個不等實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)有兩個零點,求的取值范圍;

(Ⅱ)證明:當時,關(guān)于的不等式上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高二年級學生會有理科生4名,其中3名男同學;文科生3名,其中有1名男同學.從這7名成員中隨機抽4人參加高中示范校驗收活動問卷調(diào)查.

(Ⅰ)設(shè)為事件“選出的4人中既有文科生又有理科生”,求事件的概率;

(Ⅱ)設(shè)為選出的4人中男生人數(shù)與女生人數(shù)差的絕對值,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場經(jīng)銷某商品,顧客可采用一次性付款或分期付款購買.根據(jù)以往資料統(tǒng)計,顧客采用一次性付款的概率是經(jīng)銷一件該商品,若顧客采用一次性付款,商場獲得利潤200若顧客采用分期付款,商場獲得利潤250元.

1)求3位購買該商品的顧客中至少有1位采用一次性付款的概率

2)求3位顧客每人購買1件該商品,商場獲得利潤不超過650元的概率

查看答案和解析>>

同步練習冊答案