已知數(shù)列、滿足,且,其中為數(shù)列的前項(xiàng)和,又,對(duì)任意都成立。
(1)求數(shù)列、的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和

(1);(2).

解析試題分析:本題考查等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和公式、數(shù)列求和等基礎(chǔ)知識(shí),考查運(yùn)算能力和推理論證能力.第一問(wèn),將已知條件中的代替得到新的式子,兩式子作差,得出為等差數(shù)列,注意需檢驗(yàn)的情況,將求出代入到已知的第2個(gè)式子中,用代替式子中的,兩式子作差得到表達(dá)式;第二問(wèn),將代入到中,用錯(cuò)位相減法求和.
試題解析:(1)∵,∴
兩式作差得:
∴當(dāng)時(shí),數(shù)列是等差數(shù)列,首項(xiàng)為3,公差為2,
,又符合
                                 4分
,

兩式相減得:,∴
不滿足,∴          6分
(2)設(shè)

兩式作差得:

所以,                      ..12分
考點(diǎn):1.等差數(shù)列的通項(xiàng)公式;2.等比數(shù)列的前n項(xiàng)和;3.錯(cuò)位相減法求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列是公比為正數(shù)的等比數(shù)列,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足:,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且,數(shù)列滿足,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知正項(xiàng)等差數(shù)列的前項(xiàng)和為,若,且成等比數(shù)列.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)記的前項(xiàng)和為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在等差數(shù)列,等比數(shù)列中,,,.
(1)求
(2)設(shè)為數(shù)列的前項(xiàng)和,,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的前項(xiàng)和記為,.
(1)求數(shù)列的通項(xiàng)公式;
(2)等差數(shù)列的前項(xiàng)和有最大值,且,又、、成等比數(shù)列,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列中,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)當(dāng)取最大值時(shí)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的前n項(xiàng)和記為Sn,a1=t,點(diǎn)(Sn,an+1)在直線y=2x+1上,n∈N*.
(1)當(dāng)實(shí)數(shù)為何值時(shí),數(shù)列是等比數(shù)列?
(2)在(1)的結(jié)論下,設(shè)是數(shù)列的前項(xiàng)和,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案