13.過拋物線y2=4x焦點(diǎn)F且傾斜角為60°的直線l在第一象限交拋物線于A,直線l與拋物線的準(zhǔn)線交于B,則|AB|=8.

分析 求出直線方程,聯(lián)立直線與拋物線方程消元,利用拋物線的定義,可得結(jié)論.

解答 解:由已知可得直線AF的方程為y=$\sqrt{3}$(x-1),
令x=-1,y=-2$\sqrt{3}$,所以B(-1,-2$\sqrt{3}$)
聯(lián)立直線與拋物線方程消元得:3x2-10x+3=0,
解之得:x1=3,x2=$\frac{1}{3}$(據(jù)題意應(yīng)舍去),
由拋物線定義可得:|AF|=x1+$\frac{P}{2}$=3+1=4.
∵|BF|=$\sqrt{4+12}$=4,
∴|AB|=4+4=8.
故答案為:8.

點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系,考查拋物線的定義,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)復(fù)數(shù)z滿足z•(2+i)=10-5i,(i為虛數(shù)單位),則z的模為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}是等差數(shù)列a1=1,a5=13,設(shè)Sn為數(shù)列{(-1)nan}的前n項(xiàng)和,則S2016=( 。
A.2016B.-2016C.3024D.-3024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知命題p:函數(shù)f(x)=2ax2-x-1(a≠0)在(0,1)內(nèi)恰有一個(gè)零點(diǎn); 命題q:函數(shù)y=x2-a在(0,+∞)上是減函數(shù),若p且¬q為真命題,則實(shí)數(shù)a的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|ax+2a+6<0},B={x|x<0},若B⊆(∁RA),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.從某校隨機(jī)選取5名高三學(xué)生,其身高與體重的數(shù)據(jù)如下表所示:
身高x/cm165168170172175
體重y/kg4951556169
根據(jù)上表可得回歸直線$\stackrel{∧}{y}$=2x-a.則預(yù)測身高為180cm的學(xué)生的體重為( 。
A.73kgB.75kgC.77kgD.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知x∈[0,π],使sinx≥$\frac{1}{2}$的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若定義在R上的偶函數(shù)f(x)滿足f(x-1)=f(x+1),且當(dāng)x∈[-1,0]時(shí),f(x)=-x2+1.如果函數(shù)g(x)=f(x)-a|x|恰有8個(gè)零點(diǎn),則實(shí)數(shù)a的值為8-2$\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若Cn+13=Cn3+Cn4,則n的值是(  )
A.5B.6C.7D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案