分析 由z•(2+i)=10-5i,得$z=\frac{10-5i}{2+i}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)求模公式計算得答案.
解答 解:由z•(2+i)=10-5i,
得$z=\frac{10-5i}{2+i}$=$\frac{(10-5i)(2-i)}{(2+i)(2-i)}=\frac{15-20i}{5}=3-4i$.
則z的模為:$\sqrt{{3}^{2}+(-4)^{2}}=5$.
故答案為:5.
點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
認(rèn)為作業(yè)量大 | 認(rèn)為作業(yè)量不大 | 總計 | |
男生 | 18 | 9 | 27 |
女生 | 8 | 15 | 23 |
總計 | 26 | 24 | 50 |
P(χ2≥k) | 0.05 | 0.010 | 0.005 | 0.001 |
K | 3.841 | 6.635 | 7.879 | 10.828 |
A. | 99% | B. | 95% | C. | 90% | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{OA}$,$\overrightarrow{BC}$ | B. | $\overrightarrow{OA}$,$\overrightarrow{CD}$ | C. | $\overrightarrow{AB}$,$\overrightarrow{CF}$ | D. | $\overrightarrow{AB}$,$\overrightarrow{DE}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com