A. | (-∞,2] | B. | (-∞,$\frac{5}{2}$] | C. | [2,$\frac{5}{2}$] | D. | [$\frac{5}{2}$,+∞) |
分析 求出函數(shù)的導數(shù),得到函數(shù)的單調(diào)性,問題轉(zhuǎn)化為a≤x+$\frac{1}{x}$在(0,2]恒成立,求出a的范圍即可.
解答 解:f′(x)=$\frac{{-x}^{2}+ax-1}{{x}^{2}}$,
若不等式mf(m)+nf(n)<nf(m)+mf(n)在(0,2]恒成立,
則(m-n)[f(m)-f(n)]<0在(0,2]恒成立,
故f(x)在(0,2]遞減,
故-x2+ax-1≤0在(0,2]恒成立,
故a≤x+$\frac{1}{x}$在(0,2]恒成立,
而y=x+$\frac{1}{x}$≥2在(0,2]恒成立,當且僅當x=1時取最小值2,
故a≤2,
故選:A.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及函數(shù)恒成立問題,考查轉(zhuǎn)化思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-11)∪(4,+∞) | B. | (-11,4) | C. | (-4,-3) | D. | (-∞,-4]∪[-3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\sqrt{2}$,2] | B. | [$\sqrt{2}$,+∞) | C. | ($\sqrt{2}$,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{16π}{3}$ | B. | $\frac{32π}{3}$ | C. | $\frac{64π}{3}$ | D. | $\frac{128π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | C${\;}_{6}^{2}$A${\;}_{5}^{5}$ | B. | 5C${\;}_{6}^{1}$A${\;}_{5}^{5}$ | C. | 5A${\;}_{5}^{5}$ | D. | C${\;}_{6}^{1}$A${\;}_{5}^{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com