不等式4x2-mx+1≥0對一切x∈R恒成立,則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由不等式4x2-mx+1≥0對一切x∈R恒成立,可得函數(shù)f(x)=4x2-mx+1的圖象與x軸至多有一個交點(diǎn),結(jié)合二次函數(shù)的圖象和性質(zhì),可得實(shí)數(shù)m的取值范圍.
解答: 解:∵不等式4x2-mx+1≥0對一切x∈R恒成立,
∴函數(shù)f(x)=4x2-mx+1的圖象與x軸至多有一個交點(diǎn),
∴△=m2-16≤0,
解得:m∈[-4,4],
故答案為:[-4,4]
點(diǎn)評:本題考查的知識點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=2,a n+1=an+2n.
(1)求{an}的通項(xiàng)公式;
(2)若an+3n-2=
2
bn
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=-60,a17=-12,求{|an|}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-4ax-3
(Ⅰ)當(dāng)a=-1時,求關(guān)于x的不等式f(x)>0的解集;
(Ⅱ)若對于任意的x∈R,均有不等式f(x)≤0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-x2-2x+2在區(qū)間[m,0]上值域?yàn)閇2,3],則實(shí)數(shù)m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x.
(1)求f(m-1)+1的值;
(2)若x∈[-2,a],求f(x)的值域;
(3)若存在實(shí)數(shù)t,當(dāng)x∈[1,m],f(x+t)≤3x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,P點(diǎn)的極坐標(biāo)為(2
2
4
),曲線C的極坐標(biāo)方程為ρ=4cosθ.
(1)寫出點(diǎn)P的直角坐標(biāo)及曲線C的普通方程;
(2)過P的直線l與曲線C交于A,B兩點(diǎn),若|PA|,|AB|,|PB|成等比數(shù)列,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過點(diǎn)(2,0)且與曲線y=x3相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=|log
1
2
2x|+|log
1
2
x|取最小值時x的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案