在棱長為4的正方體ABCD-A1B1C1D1中,四面體AB1CD1的體積為
64
3
64
3
分析:利用正方體的體積減去4個正三棱錐的體積即可.
解答:解:如圖所求三棱錐的體積為:正方體的體積減去4個正三棱錐的體積即43-4×
1
3
×
1
2
×4×4×4=
64
3

故答案為:
64
3
點評:本題考查幾何體的體積的求法,考查轉(zhuǎn)化思想,計算能力.解題時要認(rèn)真審題,注意空間想象力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在棱長為4的正方體ABCD-A1B1C1D1中,點E是棱CC1的中點.
(I)求三棱錐D1-ACE的體積;
(II)求異面直線D1E與AC所成角的余弦值;
(III)求二面角A-D1E-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為4的正方體ABCD-A′B′C′D′中,E、F分別是AD、A′D′的中點,長為2的線段MN的一個端點M在線段EF上運動,另一個端點N在底面A′B′C′D′上運動,則線段MN的中點P的軌跡(曲面)與二面角A-A′D′-B′所圍成的幾何體的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為4的正方體ABCD-A1B1C1D1中,點E、F分別在棱AA1和AB上,且C1E⊥EF,則|AF|的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

(文)如圖,在棱長為4的正方體ABCDABCD′中,E、F分別是ADAD′的中點,長為2的線段MN的一個端點M在線段EF上運動,另一個端點N在底面ABCD′?上運動,則線段MN的中點P的軌跡(曲面)與二面角AAD′-B′所圍成的幾何體的體積為(  )

A.      B.        C.         D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江高三上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)如圖所示,在棱長為4的正方體ABCD—A1B1C1D1中,點E是棱CC1的中點。

 

(I)求三棱錐D1—ACE的體積;

(II)求異面直線D1E與AC所成角的余弦值;

(III)求二面角A—D1E—C的正弦值。

 

查看答案和解析>>

同步練習(xí)冊答案