2.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程是$ρcos(θ-\frac{π}{4})=2\sqrt{2}$,圓C的極坐標(biāo)方程是ρ=4sinθ.
(Ⅰ)求l與C交點(diǎn)的極坐標(biāo);
(Ⅱ)設(shè)P為C的圓心,Q為l與C交點(diǎn)連線的中點(diǎn),已知直線PQ的參數(shù)方程是$\left\{\begin{array}{l}x=\root{3}{t}+a\\ y=\frac{2}\root{3}{t}+1\end{array}\right.$(t為參數(shù)),求a,b的值.

分析 (Ⅰ)列出關(guān)于θ符方程,通過(guò)三角函數(shù)求解θ,即可求l與C交點(diǎn)的極坐標(biāo);
(Ⅱ)直線PQ的參數(shù)方程是$\left\{\begin{array}{l}x=\root{3}{t}+a\\ y=\frac{2}\root{3}{t}+1\end{array}\right.$消去參數(shù)t,得到普通方程,利用第一問(wèn)的結(jié)果,即可求a,b的值.

解答 解:(Ⅰ)ρ=4sinθ代入$ρcos(θ-\frac{π}{4})=2\sqrt{2}$,得sinθcosθ=cos2θ.所以cosθ=0或tanθ=1,取$θ=\frac{π}{2}$,$θ=\frac{π}{4}$.再由ρ=4sinθ得ρ=4,或$ρ=2\sqrt{2}$.所以l與C交點(diǎn)的極坐標(biāo)是$(4,\frac{π}{2})$,或$(2\sqrt{2},\frac{π}{4})$.    …(5分)
(Ⅱ)參數(shù)方程化為普通方程得$y=\frac{2}(x-a)+1$.由(Ⅰ)得P,Q的直角坐標(biāo)分別是(0,2),(1,3),代入解得a=-1,b=2.    …(10分)

點(diǎn)評(píng) 本題考查參數(shù)方程與極坐標(biāo)方程的互化,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江蘇泰興中學(xué)高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:填空題

已知,則的最小值為_(kāi)___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若α是銳角,且sin(α-$\frac{π}{3}$)=$\frac{\sqrt{3}}{3}$,則cosα=$\frac{2\sqrt{2}-3}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F作直線l,l與拋物線的一個(gè)交點(diǎn)為A(xA,yA),與拋物線的準(zhǔn)線交于點(diǎn)B(xB,yB),且yA>0,yB<0,F(xiàn)為AB的中點(diǎn),|AF|=4.
(1)求拋物線的方程及直線l的斜率;
(2)平行于AB的直線與拋物線交于C、D兩點(diǎn),若在拋物線上存在一點(diǎn)P,使得直線PC與PD的斜率之積為-4,求直線CD在y軸上截距的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)求證:a2+b2+3≥ab+$\sqrt{3}$(a+b);
(2)已知a,b,c均為實(shí)數(shù),且a=x2+2y+$\frac{π}{2}$,b=y2+2z+$\frac{π}{3}$,c=z2+2x+$\frac{π}{6}$,求證:a,b,c中至少有一個(gè)大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$\vec a=(2,-1),{\;}^{\;}$$\vec b=(3,m),\vec a⊥\vec b時(shí)m的值為$(  )
A.$-\frac{3}{2}$B.$-\frac{2}{3}$C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的非負(fù)半軸重合,若曲線C1的方程為ρsin(θ+$\frac{π}{3}$)+2$\sqrt{3}$=0,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)).
(1)將C1的方程化為直角坐標(biāo)方程;
(2)若點(diǎn)Q為C2上的動(dòng)點(diǎn),P為C1上的動(dòng)點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知極坐標(biāo)系中的曲線ρcos2θ=sinθ與曲線ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$交于A,B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,若輸入的x的值為4,則輸出的數(shù)是( 。
A.16B.4C.64D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案