5.如圖,某幾何體的三視圖為三個(gè)邊長均為1的正方形及兩條對角線,則它的表面積為(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.3D.4

分析 由幾何體的三視圖還原幾何體,該幾何體是同底面的上下兩個(gè)正四棱錐的組合體,根據(jù)各邊是邊長為1的等邊三角形求表面積.

解答 解:如圖所示,該幾何體是同底面的上下兩個(gè)正四棱錐.
則該幾何體的表面積S=8×$\frac{1}{2}×\frac{\sqrt{3}}{2}$=2$\sqrt{3}$;
故選B.

點(diǎn)評 本題考查了正八面體的三視圖及其表面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)對價(jià)格y(單位:千元/噸)和利潤z的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如表:
 x 1 2 3 4
 y 7.06.5  5.5 3.8 2.2
(1)求y關(guān)于x的線性回歸方程;
(2)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時(shí),年利潤z取到最大值?(結(jié)果保留兩位小數(shù))
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$
參考數(shù)據(jù):$\sum_{i=1}^{5}{x}_{i}{y}_{i}=62.7$,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=55.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.曲線y=x3+x-a在點(diǎn)P0處的切線平行于直線y=4x,則點(diǎn)P0的橫坐標(biāo)是±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)的導(dǎo)數(shù).
(])y=$\frac{{x}^{3}-1}{{x}^{2}+1}$;
(2)y=x2+sin$\frac{x}{2}$cos$\frac{x}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知在△ABC中,三內(nèi)角A,B,C所對的邊分別為a,b,c,且$C=\frac{π}{3}$.
(Ⅰ)若c2=4a2-ab,求$\frac{sinB}{sinA}$;
(Ⅱ)求sinA•sinB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,某公司要在A,B兩地連線上的定點(diǎn)C處建造廣告牌CD,其中D為頂端,AC長35米,CB長為80米,設(shè)A,B在同一水平面上,從A和B看D的仰角分別為α和β.
(1)若α=30°,β=15°,求AD的長.
(2)設(shè)計(jì)中CD是鉛垂方向(CD垂直于AB),若要求α≥2β,問CD的長至多為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.將7名留學(xué)歸國人員分配到甲、乙兩地工作,若甲地至少安排3人,乙地至少安排3人,則不同的安排方法數(shù)為(  )
A.120B.150C.70D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.社會公眾人物的言行一定程度上影響著年輕人的人生觀、價(jià)值觀.某媒體機(jī)構(gòu)為了解大學(xué)生對影視、歌星以及著名主持人方面的新聞(簡稱:“星聞”)的關(guān)注情況,隨機(jī)調(diào)查了某大學(xué)的200位大學(xué)生,得到信息如表:
男大學(xué)生女大學(xué)生
不關(guān)注“星聞”8040
關(guān)注“星聞”4040
(Ⅰ)從所抽取的200人內(nèi)關(guān)注“星聞”的大學(xué)生中,再抽取三人做進(jìn)一步調(diào)查,求這三人性別不全相同的概率;
(Ⅱ)是否有95%以上的把握認(rèn)為“關(guān)注‘星聞’與性別有關(guān)”,并說明理由;
(Ⅲ)把以上的頻率視為概率,若從該大學(xué)隨機(jī)抽取4位男大學(xué)生,設(shè)這4人中關(guān)注“星聞”的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},n=a+b+c+d$.
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

同步練習(xí)冊答案