10.已知點(diǎn)M,N是拋物線(xiàn)y=4x2上不同的兩點(diǎn),F(xiàn)為拋物線(xiàn)的焦點(diǎn),且滿(mǎn)足∠MFN=135°,弦MN的中點(diǎn)P到直線(xiàn)l:y=-$\frac{1}{16}$的距離為d,若|MN|2=λ•d2,則λ的最小值為(  )
A.$\frac{\sqrt{2}}{2}$B.1-$\frac{\sqrt{2}}{2}$C.1+$\frac{\sqrt{2}}{2}$D.2+$\sqrt{2}$

分析 求得拋物線(xiàn)的焦點(diǎn)和準(zhǔn)線(xiàn)方程,設(shè)|MF|=a,|NF|=b,由∠MFN=135°,運(yùn)用余弦定理可得|MN|,運(yùn)用拋物線(xiàn)的定義和中位線(xiàn)定理可得d=$\frac{1}{2}$(|MF|+|NF|)=$\frac{1}{2}$(a+b),運(yùn)用基本不等式計(jì)算即可得到所求最小值.

解答 解:拋物線(xiàn)y=4x2的焦點(diǎn)F(0,$\frac{1}{16}$),準(zhǔn)線(xiàn)為y=-$\frac{1}{16}$,
設(shè)|MF|=a,|NF|=b,由∠MFN=135°,
可得|MN|2=|MF|2+|NF|2-2|MF|•|NF|•cos∠MFN=a2+b2+$\sqrt{2}$ab,
由拋物線(xiàn)的定義可得M到準(zhǔn)線(xiàn)的距離為|MF|,N到準(zhǔn)線(xiàn)的距離為|NF|,
由梯形的中位線(xiàn)定理可得d=$\frac{1}{2}$(|MF|+|NF|)=$\frac{1}{2}$(a+b),
由|MN|2=λ•d2,可得$\frac{1}{4}$λ=$\frac{{a}^{2}+^{2}+\sqrt{2}ab}{(a+b)^{2}}$=1-$\frac{(2-\sqrt{2})ab}{(a+b)^{2}}$
≥1-$\frac{(2-\sqrt{2})ab}{(2\sqrt{ab})^{2}}$=1-$\frac{2-\sqrt{2}}{4}$=$\frac{2+\sqrt{2}}{4}$,
可得λ≥2+$\sqrt{2}$,當(dāng)且僅當(dāng)a=b時(shí),取得最小值2+$\sqrt{2}$.
故選:D.

點(diǎn)評(píng) 本題考查拋物線(xiàn)的定義、方程和性質(zhì),考查余弦定理和基本不等式的運(yùn)用:求最值,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.某幾何體的三視圖如圖所示,俯視圖為正三角形,則該幾何體的體積是$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)f(x)=x2+ax+b有兩個(gè)零點(diǎn)x1,x2,且3<x1<x2<5,那么f(3),f(5)( 。
A.只有一個(gè)小于1B.都小于1C.都大于1D.至少有一個(gè)小于1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)為F,過(guò)F作直線(xiàn)l與拋物線(xiàn)交于點(diǎn)A(x1,y1),B(x2,y2),O為坐標(biāo)原點(diǎn),若|AB|=4p,且OA⊥OB,且$\overrightarrow{FA}$•$\overrightarrow{FB}$=-9.
(1)求拋物線(xiàn)C的方程;
(2)若直線(xiàn)l:y=x+m與拋物線(xiàn)C相切于點(diǎn)E,與圓(x+2)2+(y-$\frac{1}{2}$)2=4交于點(diǎn)F,G,求$\overrightarrow{EF}$•$\overrightarrow{EG}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如果方程$\frac{{x}^{2}}{{a}^{2}-4}$+$\frac{{y}^{2}}{a+1}$=1表示焦點(diǎn)在y軸上的雙曲線(xiàn),那么a的取值范圍是( 。
A.(-2,2)B.(-1,2)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知橢圓的兩個(gè)焦點(diǎn)是(-3,0),(3,0),且點(diǎn)(0,3)在橢圓上,則橢圓的標(biāo)準(zhǔn)方程是(  )
A.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{13}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{18}$=1D.$\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.曲線(xiàn)y=3x-2x3在x=-1處的切線(xiàn)方程為( 。
A.3x+y+4=0B.x+3y+4=0C.3x+y-4=0D.x+3y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.關(guān)于函數(shù)f(x)=6sin(2x+$\frac{π}{3}$)(x∈R),有下列命題:
①由f(x1)=f(x2)=0可得x1-x2必是π的整數(shù)倍;
②y=f(x)的表達(dá)式可改寫(xiě)為f(x)=6cos(2x-$\frac{π}{6}$);
③y=f(x)的圖象關(guān)于點(diǎn)(-$\frac{π}{6}$,0)對(duì)稱(chēng);
④y=f(x)的圖象關(guān)于直線(xiàn)x=$\frac{π}{12}$對(duì)稱(chēng).
以上命題成立的序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知cos(α+$\frac{π}{4}$)=$\frac{{\sqrt{5}}}{5}$,α∈(0,$\frac{π}{2}$),則sinα=$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案