A. | $\frac{\sqrt{2}}{2}$ | B. | 1-$\frac{\sqrt{2}}{2}$ | C. | 1+$\frac{\sqrt{2}}{2}$ | D. | 2+$\sqrt{2}$ |
分析 求得拋物線(xiàn)的焦點(diǎn)和準(zhǔn)線(xiàn)方程,設(shè)|MF|=a,|NF|=b,由∠MFN=135°,運(yùn)用余弦定理可得|MN|,運(yùn)用拋物線(xiàn)的定義和中位線(xiàn)定理可得d=$\frac{1}{2}$(|MF|+|NF|)=$\frac{1}{2}$(a+b),運(yùn)用基本不等式計(jì)算即可得到所求最小值.
解答 解:拋物線(xiàn)y=4x2的焦點(diǎn)F(0,$\frac{1}{16}$),準(zhǔn)線(xiàn)為y=-$\frac{1}{16}$,
設(shè)|MF|=a,|NF|=b,由∠MFN=135°,
可得|MN|2=|MF|2+|NF|2-2|MF|•|NF|•cos∠MFN=a2+b2+$\sqrt{2}$ab,
由拋物線(xiàn)的定義可得M到準(zhǔn)線(xiàn)的距離為|MF|,N到準(zhǔn)線(xiàn)的距離為|NF|,
由梯形的中位線(xiàn)定理可得d=$\frac{1}{2}$(|MF|+|NF|)=$\frac{1}{2}$(a+b),
由|MN|2=λ•d2,可得$\frac{1}{4}$λ=$\frac{{a}^{2}+^{2}+\sqrt{2}ab}{(a+b)^{2}}$=1-$\frac{(2-\sqrt{2})ab}{(a+b)^{2}}$
≥1-$\frac{(2-\sqrt{2})ab}{(2\sqrt{ab})^{2}}$=1-$\frac{2-\sqrt{2}}{4}$=$\frac{2+\sqrt{2}}{4}$,
可得λ≥2+$\sqrt{2}$,當(dāng)且僅當(dāng)a=b時(shí),取得最小值2+$\sqrt{2}$.
故選:D.
點(diǎn)評(píng) 本題考查拋物線(xiàn)的定義、方程和性質(zhì),考查余弦定理和基本不等式的運(yùn)用:求最值,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 只有一個(gè)小于1 | B. | 都小于1 | C. | 都大于1 | D. | 至少有一個(gè)小于1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,2) | B. | (-1,2) | C. | (0,2) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{13}$+$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{18}$=1 | D. | $\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3x+y+4=0 | B. | x+3y+4=0 | C. | 3x+y-4=0 | D. | x+3y-4=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com