分析 利用同角三角函數(shù)的基本關(guān)系求得sin(α+$\frac{π}{4}$)的值,再利用兩角差的正弦公式求得sinα=sin[($α+\frac{π}{4}$)-$\frac{π}{4}$]的值.
解答 解:∵cos(α+$\frac{π}{4}$)=$\frac{{\sqrt{5}}}{5}$,α∈(0,$\frac{π}{2}$),∴sin(α+$\frac{π}{4}$)=$\sqrt{{1-cos}^{2}(α+\frac{π}{4})}$=$\frac{2\sqrt{5}}{5}$,
則sinα=sin[($α+\frac{π}{4}$)-$\frac{π}{4}$]=sin(α+$\frac{π}{4}$)cos$\frac{π}{4}$-cos(α+$\frac{π}{4}$)sin$\frac{π}{4}$=$\frac{2\sqrt{5}}{5}•\frac{\sqrt{2}}{2}$-$\frac{\sqrt{5}}{5}•\frac{\sqrt{2}}{2}$=$\frac{{\sqrt{10}}}{10}$,
故答案為:$\frac{\sqrt{10}}{10}$.
點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的正弦公式的應(yīng)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | 1-$\frac{\sqrt{2}}{2}$ | C. | 1+$\frac{\sqrt{2}}{2}$ | D. | 2+$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{{\begin{array}{l}{x=\frac{1}{4}x'}\\{y=y'}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{x=4x'}\\{y=y'}\end{array}}\right.$ | C. | $\left\{{\begin{array}{l}{x=2x'}\\{y=y'}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{x=4x'}\\{y=8y'}\end{array}}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com