【題目】已知拋物線E:y2=2px(p>0)的準(zhǔn)線為l,圓C:(x﹣)2+y2=4,l與圓C交于A,B,圓C與E交于M,N.若A,B,M,N為同一個矩形的四個頂點,則E的方程為( )
A. y2=xB. y2=xC. y2=2xD. y2=2x
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學(xué)方法測算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月A,B兩種移動支付方式的使用情況,從全校學(xué)生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
交付金額(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
僅使用A | 18人 | 9人 | 3人 |
僅使用B | 10人 | 14人 | 1人 |
(Ⅰ)從全校學(xué)生中隨機抽取1人,估計該學(xué)生上個月A,B兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機抽取1人,以X表示這2人中上個月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,設(shè)點集,令.從集合Mn中任取兩個不同的點,用隨機變量X表示它們之間的距離.
(1)當(dāng)n=1時,求X的概率分布;
(2)對給定的正整數(shù)n(n≥3),求概率P(X≤n)(用n表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓,圓為.
(1)若橢圓的長軸為4,且焦距與橢圓的焦距相等,求橢圓的標(biāo)準(zhǔn)方程;
(2)過圓上任意一點作其切線,若與橢圓交于兩點,求證:為定值(為坐標(biāo)原點);
(3)在(2)的條件下,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,與交于點,,,.
(Ⅰ)在線段上找一點,使得平面,并證明你的結(jié)論;
(Ⅱ)若,,,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年10月28日,重慶公交車墜江事件震驚全國,也引發(fā)了廣大群眾的思考——如何做一個文明的乘客.全國各地大部分社區(qū)組織居民學(xué)習(xí)了文明乘車規(guī)范.社區(qū)委員會針對居民的學(xué)習(xí)結(jié)果進行了相關(guān)的問卷調(diào)查,并將得到的分?jǐn)?shù)整理成如圖所示的統(tǒng)計圖.
(Ⅰ)求得分在上的頻率;
(Ⅱ)求社區(qū)居民問卷調(diào)查的平均得分的估計值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(Ⅲ)以頻率估計概率,若在全部參與學(xué)習(xí)的居民中隨機抽取5人參加問卷調(diào)查,記得分在間的人數(shù)為,求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過點,且在點處的切線方程為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一場娛樂晚會上, 有5位民間歌手(1至5號)登臺演唱, 由現(xiàn)場數(shù)百名觀眾投票選出最受歡迎歌手. 各位觀眾須彼此獨立地在選票上選3名選手, 其中觀眾甲是1號歌手的歌迷, 他必選1號, 不選2號, 另在3至5號中隨機選2名. 觀眾乙和丙對5位歌手的演唱沒有偏愛, 因此在1至5號中隨機選3名歌手.
(Ⅰ) 求觀眾甲選中3號歌手且觀眾乙未選中3號歌手的概率;
(Ⅱ) X表示3號歌手得到觀眾甲、乙、丙的票數(shù)之和, 求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com