10.已知tanθ=2,則$\frac{{sin(\frac{π}{2}+θ)-cos(π-θ)}}{{sin(\frac{π}{2}-θ)-sin(π-θ)}}$=-2.

分析 利用誘導(dǎo)公式化簡(jiǎn)求解即可.

解答 解:tanθ=2,
則$\frac{{sin(\frac{π}{2}+θ)-cos(π-θ)}}{{sin(\frac{π}{2}-θ)-sin(π-θ)}}$=$\frac{cosθ+cosθ}{cosθ-sinθ}$=$\frac{2}{1-tanθ}$=-2.
故答案為:-2.

點(diǎn)評(píng) 本題考查三角函數(shù)化簡(jiǎn)求值,誘導(dǎo)公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R).
(1)若a<0,b>0,c=0,且f(x)在[0,2]上的最大值為$\frac{9}{8}$,最小值為-2,試求a,b的值;
(2)若c=1,0<a<1,且|$\frac{f(x)}{x}$|≤2對(duì)任意x∈[1,2]恒成立,求b的取值范圍.(用a來表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.?dāng)?shù)列{an}的通項(xiàng)公式是an=ncos$\frac{nπ}{2}$,其前n項(xiàng)和為Sn,則S2016等于(  )
A.1008B.2016C.504D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,已知向量$\overrightarrow{a}$=(sinA,1),$\overrightarrow$=(cosA,$\sqrt{3}$),且$\overrightarrow{a}$∥$\overrightarrow$
(1)若sinφ=$\frac{3}{5}$,0<φ<$\frac{π}{2}$,求cos(φ-A)的值;
(2)若△ABC面積為2,AB=2,求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知圓上是弧AC=弧BD,過點(diǎn)C的圓的切線CE與BA的延長(zhǎng)線交于點(diǎn)E.
(1)求證:∠ACE=∠BCD;
(2)求證:BD2=AE•CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知曲線y=1+lnx與過原點(diǎn)的直線相切,則直線的斜率為( 。
A.eB.-eC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,則輸出的S值為(  )
A.-1008B.1008C.-2016D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.下列說法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程$\stackrel{∧}{y}$=3-5x,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;
③線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$必過$(\overline x,\overline y)$;
④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079,則有99%的把握確認(rèn)這兩個(gè)變量間有關(guān)系.
其中正確的是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.與400°終邊相同的最小正角是40°.

查看答案和解析>>

同步練習(xí)冊(cè)答案