3.已知$\overrightarrow a$=($\sqrt{3}$,$\sqrt{5}$),$\overrightarrow b$⊥$\overrightarrow a$,且|$\overrightarrow b$|=2,則向量$\overrightarrow b$的坐標為(-$\frac{\sqrt{10}}{2}$,$\frac{\sqrt{6}}{2}$)或($\frac{\sqrt{10}}{2}$,-$\frac{\sqrt{6}}{2}$).

分析 設$\overrightarrow$=(x,y),由$\overrightarrow a$=($\sqrt{3}$,$\sqrt{5}$),$\overrightarrow b$⊥$\overrightarrow a$,且|$\overrightarrow b$|=2,列出方程組,能求出向量$\overrightarrow b$的坐標.

解答 解:設$\overrightarrow$=(x,y),
∵$\overrightarrow a$=($\sqrt{3}$,$\sqrt{5}$),$\overrightarrow b$⊥$\overrightarrow a$,且|$\overrightarrow b$|=2,
∴$\left\{\begin{array}{l}{\overrightarrow{a}•\overrightarrow=\sqrt{3}x+\sqrt{5}y=0}\\{\sqrt{{x}^{2}+{y}^{2}}=2}\end{array}\right.$,
解得x=-$\frac{\sqrt{10}}{2}$,y=$\frac{\sqrt{6}}{2}$或x=$\frac{\sqrt{10}}{2}$,y=-$\frac{\sqrt{6}}{2}$.
∴$\overrightarrow$=(-$\frac{\sqrt{10}}{2}$,$\frac{\sqrt{6}}{2}$)或$\overrightarrow$=($\frac{\sqrt{10}}{2}$,-$\frac{\sqrt{6}}{2}$).
故答案為:(-$\frac{\sqrt{10}}{2}$,$\frac{\sqrt{6}}{2}$)或($\frac{\sqrt{10}}{2}$,-$\frac{\sqrt{6}}{2}$).

點評 本題考查向量的坐標的求法,是基礎題,解題時要認真審題,注意向量垂直的條件的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.寫出下列命題的否定并判斷真假:
(1)所有自然數(shù)的平方是正數(shù);
(2)任何實數(shù)x都是方程5x-12=0的根;
(3)?x∈R,x2-3x+3>0;     
(4)有些質數(shù)不是奇數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知曲線y=3cos(2x-$\frac{π}{3}$)+1的對稱中心的坐標構成集合A,則下列說法正確的是(  )
A.($\frac{11π}{12}$,0)∈AB.(-$\frac{7π}{12}$,1)∉A
C.{(-$\frac{7π}{12}$,1),($\frac{17π}{12}$,1)}⊆AD.{($\frac{π}{2}$,1),($\frac{17π}{12}$,1)}⊆A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)y=3x3-9x+5在區(qū)間[-2,2]上的最大值與最小值之和是10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知曲線C1:y=ex上一點A(x1,y1),曲線C2:y=1+ln(x-m)(m>0)上一點B(x2,y2),當y1=y2時,對于任意x1,x2,都有|AB|≥e恒成立,則m的最小值為(  )
A.1B.$\sqrt{e}$C.e-1D.e+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-2x.
(Ⅰ)當a=3時,求f(x)的單調區(qū)間;
(Ⅱ)若?a∈(-1,+∞),?x∈(1,e),有f(x)-b<0,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=x3-$\frac{1}{2}$x-2x+c(c為常數(shù)),若x∈[-1,2]時,f(x)<c2恒成立,求c的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=x4-$\frac{1}{3}$mx3+$\frac{1}{2}$x2+1在(0,1)上是單調遞增函數(shù),則實數(shù)m的最大值為(  )
A.4B.5C.$\frac{29}{5}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知a=23,b=log2$\frac{1}{3}$,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,則( 。
A.c>b>aB.c>a>bC.a>c>bD.a>b>c

查看答案和解析>>

同步練習冊答案