A. | 1 | B. | $\sqrt{e}$ | C. | e-1 | D. | e+1 |
分析 當y1=y2時,對于任意x1,x2,都有|AB|≥e恒成立,可得:${e}^{{x}_{1}}$=1+ln(x2-m),x2-x1≥e,一方面0<1+ln(x2-m)≤${e}^{{x}_{2}-e}$,${x}_{2}>m+\frac{1}{e}$.利用lnx≤x-1(x≥1),考慮x2-m≥1時.可得1+ln(x2-m)≤x2-m,令x2-m≤${e}^{{x}_{2}-e}$,可得m≥x-ex-e,利用導數(shù)求其最大值即可得出.
解答 解:當y1=y2時,對于任意x1,x2,都有|AB|≥e恒成立,可得:${e}^{{x}_{1}}$=1+ln(x2-m),x2-x1≥e,
∴0<1+ln(x2-m)≤${e}^{{x}_{2}-e}$,∴${x}_{2}>m+\frac{1}{e}$.
∵lnx≤x-1(x≥1),考慮x2-m≥1時.
∴1+ln(x2-m)≤x2-m,
令x2-m≤${e}^{{x}_{2}-e}$,
化為m≥x-ex-e,x>m+$\frac{1}{e}$.
令f(x)=x-ex-e,則f′(x)=1-ex-e,可得x=e時,f(x)取得最大值.
∴m≥e-1.
故選:C.
點評 本題考查了利用導數(shù)研究函數(shù)的單調性極值與最值、不等式的解法、方程的解法、等價轉化方法,考查了分類討論方法、推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 16 | C. | 64 | D. | 256 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com