分析 (1)由函數(shù)的解析式可得|x+1|+|x-1|>3,把它轉(zhuǎn)化為與之等價的三個不等式組,求出每個不等式組的解集,再取并集,記得所求.
(2)由題意可得f(x)≥2恒成立,即|x+1|+|x-1|-a≥4 恒成立,利用絕對值三角不等式求得|x+1|+|x-1|的最小值為2,可得 2-a≥4,由此求得實數(shù)a的最大值.
解答 解:(1)當(dāng)a=3時,函數(shù)f(x)=log2(|x+1|+|x-1|-a)=log2(|x+1|+|x-1|-3),
∴|x+1|+|x-1|-3>0,即|x+1|+|x-1|>3,
∴$\left\{\begin{array}{l}{x<-1}\\{-x-1+1-x>3}\end{array}\right.$①,或$\left\{\begin{array}{l}{-1≤x≤1}\\{x+1+(1-x)>3}\end{array}\right.$②,或$\left\{\begin{array}{l}{x>1}\\{x+1+x-1>3}\end{array}\right.$③.
解①求得x<-$\frac{3}{2}$,解②求得x∈∅,解③求得x>$\frac{3}{2}$,
故函數(shù)的定義域為{x|x<-$\frac{3}{2}$,或x>$\frac{3}{2}$}.
(2)若不等式f(x)≥2的解集為R,則f(x)≥2恒成立,
故|x+1|+|x-1|-a≥4.
∵|x+1|+|x-1|≥|x+1-(x-1)|=2,
∴2-a≥4,故有a≤-2,
故實數(shù)a的最大值為-2.
點評 本題主要考查絕對值不等式的解法,絕對值三角不等式,函數(shù)的恒成立問題,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -8 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 21 | B. | 22 | C. | 23 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{6}$ | B. | 1 | C. | $\frac{3}{4}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36 | B. | 72 | C. | 144 | D. | 288 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com