19.已知結(jié)論“圓x2+y2=r2(r>0)上一點P(x0,y0)處切線方程為$\frac{{{x_0}x}}{r^2}+\frac{{{y_0}y}}{r^2}=1$”.類比圓的這個結(jié)論得到關(guān)于橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$在點P(x0,y0)的切線方程為$\frac{{x}_{0}x}{{a}^{2}}+\frac{{y}_{0}y}{^{2}}=1$.

分析 由過圓x2+y2=r2上一點的切線方程為$\frac{{{x_0}x}}{r^2}+\frac{{{y_0}y}}{r^2}=1$,類比推斷出過橢圓上一點的切線方程:用x0x代x2,用y0y代y2,即可得.

解答 解:類比過圓上一點的切線方程,圓x2+y2=r2(r>0)上一點P(x0,y0)處切線方程為$\frac{{{x_0}x}}{r^2}+\frac{{{y_0}y}}{r^2}=1$,
可合情推理:
過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$在點P(x0,y0)的切線方程為:$\frac{{x}_{0}x}{{a}^{2}}+\frac{{y}_{0}y}{^{2}}=1$.
故答案為:$\frac{{x}_{0}x}{{a}^{2}}+\frac{{y}_{0}y}{^{2}}=1$.

點評 本題考查利用類比推理得到結(jié)論、證明類比結(jié)論時證明過程與其類比對象的證明過程類似或直接轉(zhuǎn)化為類比對象的結(jié)論.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1、F2,點P(x0,$\frac{5}{2}$)為雙曲線上一點,若△PF1F2的內(nèi)切圓半徑為1,且圓心G到原點O的距離為$\sqrt{5}$,則雙曲線的離心率是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,|$\overrightarrow{a}$|=1,且$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow$),則|$\overrightarrow$|=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點,結(jié)點之間的連線表示有網(wǎng)線相連.連線上標注的數(shù)字表示該網(wǎng)線單位時間內(nèi)可以通過的最大信息量,現(xiàn)從結(jié)點A向結(jié)點B傳遞信息,信息可沿不同的路徑同時傳遞,則單位的時間內(nèi)傳遞的最大信息量是( 。
A.26B.24C.20D.19

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若函數(shù)f(x)=tan(ωx-$\frac{π}{3}$)(ω>0)的最小正周期為$\frac{π}{2}$,則函數(shù)f(x)的一個單調(diào)遞增區(qū)間是( 。
A.(-$\frac{π}{6}$,$\frac{π}{12}$)B.($\frac{π}{4}$,$\frac{7π}{12}$)C.($\frac{π}{3}$,$\frac{5π}{6}$)D.(-$\frac{7π}{12}$,-$\frac{π}{12}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.骨質(zhì)疏松癥被稱為“靜悄悄的流行病“,早期的骨質(zhì)疏松癥患者大多數(shù)無明顯的癥狀,針對中學校園的學生在運動中骨折事故頻發(fā)的現(xiàn)狀,教師認為和學生喜歡喝碳酸飲料有關(guān),為了驗證猜想,學校組織了一個由學生構(gòu)成的興趣小組,聯(lián)合醫(yī)院檢驗科,從高一年級中按分層抽樣的方法抽取50名同學 (常喝碳酸飲料的同學30,不常喝碳酸飲料的同學20),對這50名同學進行骨質(zhì)檢測,檢測情況如表:(單位:人)
有骨質(zhì)疏松癥狀無骨質(zhì)疏松癥狀總計
常喝碳酸飲料的同學22830
不常喝碳酸飲料的同學81220
總計302050
(1)能否據(jù)此判斷有97.5%的把握認為骨質(zhì)疏松癥與喝碳酸飲料有關(guān)?
(2)記常喝碳酸飲料且無骨質(zhì)疏松癥狀的8名同學為A,B…G,H,從8名同學中任意抽取兩人,對他們今后是否有骨質(zhì)疏松癥狀情況進行全程跟蹤研究,求A,B至少有一個被抽到的概率.
附表及公式.
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知圓柱的底面直徑為4,高為5,則該圓柱的側(cè)面積為20π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知{an}是等比數(shù)列,a1=3,a4=24,數(shù)列{bn}滿足b1=1,b4=-8,且{an+bn}是等差數(shù)列.
(Ⅰ)求數(shù)列{an}和{an+bn}的通項公式;
(Ⅱ)求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知($\frac{1}{2}$)x<($\frac{1}{2}$)y<1,則下列不等關(guān)系一定成立的是( 。
A.2x<2yB.log2x<log2yC.x3>y3D.cosx<cosy

查看答案和解析>>

同步練習冊答案