14.若函數(shù)f(x)=tan(ωx-$\frac{π}{3}$)(ω>0)的最小正周期為$\frac{π}{2}$,則函數(shù)f(x)的一個(gè)單調(diào)遞增區(qū)間是(  )
A.(-$\frac{π}{6}$,$\frac{π}{12}$)B.($\frac{π}{4}$,$\frac{7π}{12}$)C.($\frac{π}{3}$,$\frac{5π}{6}$)D.(-$\frac{7π}{12}$,-$\frac{π}{12}$)

分析 利用正切函數(shù)的周期性求得ω,可得函數(shù)的解析式,再利用正切函數(shù)的單調(diào)性,求得函數(shù)f(x)的一個(gè)單調(diào)遞增區(qū)間.

解答 解:∵函數(shù)f(x)=tan(ωx-$\frac{π}{3}$)(ω>0)的最小正周期為$\frac{π}{ω}$=$\frac{π}{2}$,∴ω=2,
∴f(x)=tan(2x-$\frac{π}{3}$).
令kπ-$\frac{π}{2}$<2x-$\frac{π}{3}$<kπ+$\frac{π}{2}$,求得 $\frac{kπ}{2}$-$\frac{π}{12}$<x<$\frac{kπ}{2}$+$\frac{5π}{12}$,可得函數(shù)的增區(qū)間為( $\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{5π}{12}$),k∈Z,
故當(dāng)k=-1時(shí),函數(shù)的增區(qū)間為(-$\frac{7π}{12}$,-$\frac{π}{12}$),
故選:D.

點(diǎn)評(píng) 本題主要考查正切函數(shù)的周期性和單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.橢圓2x2+y2=6的焦點(diǎn)坐標(biāo)是( 。
A.(±$\sqrt{3}$,0)B.(0,±$\sqrt{3}$)C.(±3,0)D.(0,±3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ax2-1-lnx,其中a∈R
(1)探討f(x)的單調(diào)性
(2)若f(x)≥x對(duì)x∈(1,+∞)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知復(fù)數(shù)z滿足|z-1|=|z-i|,其中i為虛數(shù)單位,且z+$\frac{1}{z}$為實(shí)數(shù),則z=$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$或$-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若cosx=-$\frac{2}{3}$,當(dāng)x∈[0,2π),求角x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知結(jié)論“圓x2+y2=r2(r>0)上一點(diǎn)P(x0,y0)處切線方程為$\frac{{{x_0}x}}{r^2}+\frac{{{y_0}y}}{r^2}=1$”.類比圓的這個(gè)結(jié)論得到關(guān)于橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$在點(diǎn)P(x0,y0)的切線方程為$\frac{{x}_{0}x}{{a}^{2}}+\frac{{y}_{0}y}{^{2}}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)是定義在[-3,0)∪(0,3]上的奇函數(shù),當(dāng)x∈(0,3]時(shí),f(x)的圖象如圖所示,那么滿足不等式f(x)≥2x-1的取值范圍是(  )
A.[-2,1]B.[-3,-2]∪(0,3]C.[-2,0]∪(1,4]D.[-3,0]∪[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)α∈{-2,-1,$\frac{1}{3}$,1,2,3},則使冪函數(shù)y=xa為奇函數(shù)且在(0,+∞)上單調(diào)遞減的a個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)a≥b≥0,求證:a3+b3≥$\sqrt{ab}$(a2+b2).

查看答案和解析>>

同步練習(xí)冊(cè)答案