【題目】解不等式
【答案】【解答】解:原不等式化為|x+7|-|3x-4|+-1>0
當 時,原不等式為x+7-(3x-4)+-1>0
得 ,即 ;
當 時,原不等式為x+7+(3x-4)+-1>0
得 ,即 ;
當 x<-7 時,原不等式為 x+7-(3x-4)+-1>0
得 ,與 x<-7 矛盾;
所以解集為
【解析】本題主要考查了絕對值不等式的解法,解決問題的關鍵是根據(jù)已知的不等式可知,化簡為 |x+7|-|3x-4|+-1>0 ,然后對當 時,原不等式為 當 時,原不等式為 ;當 時,原不等式為 ,分為3種情況來解答.
【考點精析】本題主要考查了絕對值不等式的解法的相關知識點,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,
得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x+m21﹣x .
(1)若函數(shù)f(x)為奇函數(shù),求實數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是單調(diào)遞增函數(shù),求實數(shù)m的取值范圍;
(3)是否存在實數(shù)a,使得函數(shù)f(x)的圖象關于點A(a,0)對稱,若存在,求實數(shù)a的值,若不存在,請說明理由.
注:點M(x1 , y1),N(x2 , y2)的中點坐標為( , ).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班20名同學某次數(shù)學測試的成績可繪制成如圖莖葉圖.由于其中部分數(shù)據(jù)缺失,故打算根據(jù)莖葉圖中的數(shù)據(jù)估計全班同學的平均成績.
(1)完成頻率分布直方圖;
(2)根據(jù)(1)中的頻率分布直方圖估計全班同學的平均成績(同一組中的數(shù)據(jù)用改組區(qū)間的中點值作代表);
(3)根據(jù)莖葉圖計算出的全班的平均成績?yōu)?/span>,并假設,且取得每一個可能值的機會相等,在(2)的條件下,求概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)= +5x+6在區(qū)間[1,3]上為單調(diào)函數(shù),則實數(shù)a的取值范圍是( )
A.[﹣ ,+∞)
B.(﹣∞,﹣3]
C.(﹣∞,﹣3]∪[﹣ ,+∞)
D.[﹣ , ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)g(x)=log2 (x>0),關于方程|g(x)|2+m|g(x)|+2m+3=0有三個不同實數(shù)解,則實數(shù)m的取值范圍為( )
A.(﹣∞,4﹣2 )∪(4 ,+∞)
B.(4﹣2 ,4 )
C.(﹣ ,﹣ )
D.(﹣ ,﹣ ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】請閱讀下列材料:若兩個正實數(shù)a1 , a2滿足a12+a22=1,那么a1+a2≤ .
證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因為對一切實數(shù)x , 恒有f(x)≥0,所以Δ≤0,從而得4(a1+a2)2-8≤0,所以a1+a2≤ .
根據(jù)上述證明方法,若n個正實數(shù)滿足a12+a22+…+an2=1時,你能得到的結(jié)論為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正三棱錐V﹣ABC的底面邊長為2,E,F(xiàn),G,H分別是VA,VB,BC,AC的中點,則四邊形EFGH的面積的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com