【題目】正三棱錐V﹣ABC的底面邊長為2,E,F(xiàn),G,H分別是VA,VB,BC,AC的中點,則四邊形EFGH的面積的取值范圍是

【答案】( ,+∞)
【解析】解:由條件可知:EF=HG=1,EFGH是平行四邊形,
因為正三棱錐V﹣ABC,所以EFGH是矩形而EH,F(xiàn)G,是變量,
當V點在ABC平面時,VA=VB=VC= ,
此時EH,F(xiàn)G有最小值,EH=FG= VA=
EFGH的面積為:EFEH=1× =
∴四邊形EFGH的面積的取值范圍是( ,+∞).
所以答案是:( ,+∞).

【考點精析】解答此題的關(guān)鍵在于理解棱錐的結(jié)構(gòu)特征的相關(guān)知識,掌握側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)設函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當函數(shù)有最大值且最大值大于時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .若 ,求 的值;當 時,求 的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把一副三角板ABC與ABD擺成如圖所示的直二面角D﹣AB﹣C,(其中BD=2AD,BC=AC)則異面直線DC,AB所成角的正切值為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定圓P:x2+y2=2x及拋物線S:y2=4x,過圓心P作直線l,此直線與上述兩曲線的四個交點,自上而下順次為A,B,C,D;如果線段AB,BC,CD的長度按此順序構(gòu)成一個等差數(shù)列,則直線l的方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2BC,點M在邊DC上,點F在邊AB上,且DF⊥AM,垂足為E,若將△ADM沿AM折起,使點D位于D′位置,連接D′B,D′C得四棱錐D′﹣ABCM.

(1)求證:AM⊥D′F;
(2)若∠D′EF= ,直線D'F與平面ABCM所成角的大小為 ,求直線AD′與平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點為,且離心率為 .
(1)求橢圓的方程;
(2)直線(與坐標軸 不平行)與橢圓交于不同的兩點,且線段中點的橫坐標為 ,求直線傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司準備將1000萬元資金投入到市環(huán)保工程建設中,現(xiàn)有甲、乙兩個建設項目選擇,若投資甲項目一年后可獲得的利潤(萬元)的概率分布列如下表所示:

的期望;若投資乙項目一年后可獲得的利潤(萬元)與該項目建設材料的成本有關(guān),在生產(chǎn)的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進行產(chǎn)品的價格調(diào)整,兩次調(diào)整相互獨立且調(diào)整的概率分別為.若乙項目產(chǎn)品價格一年內(nèi)調(diào)整次數(shù)(次數(shù))與的關(guān)系如下表所示:

(1)求的值;

(2)求的分布列;

(3)若,則選擇投資乙項目,求此時的取值范圍.

查看答案和解析>>

同步練習冊答案