在角集合M={α|α=
34
π+kπ,k∈Z}
,終邊位于-4π到-2π之間的角為
 
分析:根據(jù)所給的角集合和規(guī)定的范圍,令k=-3和-4分別代入式子,即求出終邊位于-4π到-2π之間的角.
解答:解:由題意知,M={α|α=
3
4
π+kπ,k∈Z}
,
當k=-5時,α=
3
4
π-3π
=-
9
4
π
,當k=-4時,α=
3
4
π-4π
=-
13
4
π

故答案為:-
13
4
π
,-
9
4
π
點評:本題考查終邊相同的角的集合,利用k的取值求出對應范圍內(nèi)終邊相同的角.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知角α=45°;
(1)在區(qū)間[-720°,0°]內(nèi)找出所有與角α有相同終邊的角β;
(2)集合M={x|x=
k
2
×180°+45°, k∈Z}
,N={x|x=
k
4
×180°+45°, k∈Z}
,那么兩集合的關(guān)系是什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊經(jīng)過點P(1,
3
),試寫出角α的集合M,并把集合M中在-360°~720°間的角寫出來.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的個數(shù)為( 。
①斜線與它在平面內(nèi)的射影所成的角是這條斜線和這個平面內(nèi)所有直線所成的角的最小角.
②二面角α-l-β的平面角是過棱l上任一點O,分別在兩個半平面內(nèi)任意兩條射線OA,OB所成角的∠AOB的最大角.
③如果一條直線和一個平面的一條斜線垂直,那么它也和這條斜線在這個平面內(nèi)的射影垂直.
④設A是空間一點,
n
為空間任一非零向量,適合條件的集合{
M
|
AM
n
=0
}的所有點M構(gòu)成的圖形是過點A且與
n
垂直的一個平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合M={α|α=k·90°,k∈Z}中,各角終邊都在(    )

A.x軸非負半軸上                B.y軸非負半軸上

C.x軸或y軸的非正半軸上        D.x軸或y軸上

??

查看答案和解析>>

同步練習冊答案